Predicting hazardous materials in the
Swedish building stock using data mining

PEI-YU WU | FACULTY OF ENGINEERING | LUND UNIVERSITY




Transitioning into a circular construction is an inevitable trend to optimize
resource efficiency. However, the presence of hazardous materials from the
end-of-lifecycle buildings are incompatible with the ambition for a circular
construction and challenges its realization in practice. Pre-demolition audits
therefore act as a crucial means to assure quality of the recovered materials.
Over years, these inventories of hazardous waste have been archived on a
national scale, but are left out from building stock registers. What's their
potential as input data for machine learning prediction? How can we leaverage
the past detection records to trace the patterns of hazardous materials in the
existing building stock. The thesis tries to answer these questions by mining
the archived inventory data and information from relevant building registers.
In search for emergent data-driven approaches for in situ hazardous mate-
rial identification, the research front of construction and demolition waste
management was presented. A promising hazardous material dataset and a
machine learning pipeline were created as the means for assessing the potential
detection and exposure risk. Also, the complexity of applied Al in addressing
the diversity of building data is highlighted. The applied research aims to open
a discussion for the necessity of establishing a standardized data collection
infrastructure and assessment procedure to facilitate a data-driven hazardous
material management.
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Abstract

Identifying the potential presence of hazardous materials can prevent unexpected
decontamination costs and delays, as well as contaminant exposure in renovation
and demolition work. However, the use of hazardous materials in past construction
is comprehensive and lacks quantification. The current pre-demolition audit on the
building basis is not efficient enough for large-scale mapping. As such, novel
approaches for pattern identification need to be developed to facilitate
contamination risk assessment in existing buildings. Data mining and its subfield
machine learning present a new opportunity for using detection records to screen
the likely presence of in situ hazardous materials in the national building stock.

The aim of the study is, therefore, to explore the potential of applied machine
learning for predicting hazardous materials using building registers as input data
and hazardous waste inventories as training and validation data. Considerable
efforts have been dedicated to reducing the data uncertainty in merging and
matching empirical data and building registers. The workflows of constructing a
hazardous material dataset and a machine learning pipeline highlighted the
complexity of processing unstructured, heterogeneous building-specific data. The
results indicated that machine learning techniques succeed in characterizing
suspected hazardous building materials, which is of significance for realizing the
EU Construction and Demolition Waste Management Protocol. The detection
likelihood of asbestos, PCB, CFC, and mercury were estimated according to
inventory document types and building classes. Considering the building stock’s
diversity, a cross-validation matrix evaluating the quality and quantity of data
subgroups was created for data stratification. Asbestos and PCB-containing
materials in multifamily houses, schools, and commercial buildings were potential
for modeling. Six supervised algorithms were used to test the prediction possibility.
The average validation accuracies are 74% and 83% for predicting asbestos pipe
insulation in multifamily houses and PCB joints or sealants in school buildings.

Influential features to the prediction results were also visualized for expert
knowledge interpretation, which has a practical implementation for assisting
decision-making in constructing clean material loops. Construction year, floor area,
and the number of stairwells and floors were influential for asbestos pipe insulation
prediction, while construction year, balanced ventilation system, floor area are
critical for PCB joints or sealants prediction. The proposed bottom-up modeling
approach can potentially be scaled up to a national level and replicated in other
countries with similar access to building stock data.
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Definitions and acronyms

Swedish real estate taxation register (Real property register)

The Swedish real estate taxation register includes information on
tax data transferred from the Swedish Tax Agency to the
Swedish Cadastral and Land Registration Authority.

Municipal cadastral register (Property map)

The Municipal cadastral register was reported from
municipalities to the Swedish Cadastral and Land Registration
Authority for the property map data product updates.

Semi-selective demolition

Semi-selective demolition is when demolition companies
selectively collect all hazardous substances and that part of the
non-hazardous substances that would overly reduce the quality
of the stony fraction.

Backfilling

Backfilling is a recovery operation where waste is used as a
substitute for non-waste materials to reclaim excavated areas or
for engineering purposes in landscaping.

Artificial neural network (ANN)

ANN is derived from biological neural networks that have
neurons interconnected in various layers of the networks. It can
be used for both supervised and unsupervised learning.

Deep neural network (DNN)
DNN is a class of ANN algorithms for complicated learning

tasks that simulates human neurons and forms the networks of
multiple input layers, hidden layers, and output layers.

Multilayer perceptron (MLP)

Multilayer perceptron is a class of feed-forward neural network
for supervised learning that consisting of an input layer, an
output layer and one or several hidden layers.
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Convolutional neural network (CNN)

Convolutional neural network is a class of artificial neural
networks designed for processing structured arrays of data such
as images.

Support vector machine (SVM)

SVM is a supervised learning classifier that projects the data
points in space and determines their categories based on the gap
for regression or classification.

Recursive feature elimination (RFE)

RFE is a feature selection method that fits a model and removes
the weakest features until the specified number of features is
reached.

Extremely Randomized Trees Classifier (Extra Trees)

Extra Trees is a tree-ensembled machine learning algorithm that
combines the predictions from many decision trees fitted on the
entire training dataset.

K-Nearest Neighbors (k-NN)

k-NN is a non-parametric supervised learning classifier
estimating the likelihood of regression and classification based
on what group the data points nearest to it belong to.

Extreme Gradient Boosting (XGBoost)

XGBoost is a tree-ensembled algorithm optimizing regularized
gradient boosting for regression and classification tasks.

Receiver Operating Characteristic curve (ROC curve)

ROC curve is a graphical plot that illustrates the diagnostic
ability of a binary classifier with varied discrimination threshold
where the true positive rate at the y-axis is plotted against the
false positive rate at the x-axis.

Area under the ROC Curve (AUC)

AUC is a scale variable estimating the overall performance of a
binary classifier by representing the degree or measure of
separability with a range between 0,5-1,0.

Shapley Addictive exPlanations (SHAP)

SHAP is a framework that explains the output of machine
learning models using Shapley values, a game-theoretic
approach used for optimal credit allocation.
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Partial Least-Square-Discrimination Analysis (PLS-DA)

PLS-DA is a dimension reduction technique used for classifying
categorical dependent variables.

Soft Independent Modeling of Class Analogies (SIMCA)

SIMCA is a statistical method for supervised classification for
data with a set of attributes and their class membership for data
labeling.

Linear/Quadratic discriminant function analysis (LDFA/QDFA)

LDFA is a classification and dimensionality reduction technique
and QDFA is a variant of LDFA that allows for non-linear
separation of data.

Random Forest (RF)

Random Forest is a supervised tree-ensembled algorithm that fits
several decision tree classifiers on various sub-samples of the
dataset and uses averaging to improve the predictive accuracy
and control overfitting.

Naive Bayes (NB)

Naive Bayes is a probabilistic supervised learning algorithm
based on Bayes theorem for solving classification problems.

Principal component analysis (PCA)

Principal component analysis is a dimensionality reduction
unsupervised learning method used for reducing the
dimensionality of datasets by transforming a large set of
variables into a smaller one without losing much of the
information.

Accuracy (ACC)
Accuracy is measured by the number of true positives and true
negatives divided by the total number of data points in a dataset.
ACC=(TP+TN)/(P+N)
TP: True positive
TN: True negative
P: Positive
N: Negative

Recall (REC, Sensitivity)

Recall is measured by the number of true positives divided by
the total number of actual positives.

REC=TP/(TP+FN)

15



Precision (PRE, Positive predictive value)

Precision is measured by the number of true positives divided by
the total number of positive predictions.

REC=TP/(TP+FP)

F1 score
F1 score is a harmonized mean of precision and recall and works
well for class imbalanced data. F1 score is a scale variable with
a range between 0,0-1,0.
F1=2(REC*PRE/(REC+PRE))

Pseudo-R’
Pseudo-R? is a performance measure for logistic regression
based on the log-likelihood for the model compared to the log-
likelihood for a baseline model using the formula:
pseudo R’ = 1-(MSE/Var(Y))
MSE: average square error
Var: variance
Y: a set of variables.

CE Circular economy

EPC Energy Performance Certificates

PCB Polychlorinated biphenyls

CFC Chlorofluorocarbon

ACM Asbestos-containing material

CDW Construction and demolition waste

ML Machine learning

BIM Building information modeling

GIS Geographic information system

HVAC Heating, ventilation, and air conditioning

PV Photovoltaic

Al Artificial intelligence

PRISMA Preferred reporting items for systematic reviews and meta-

analyses
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1. Introduction

In Sweden, a majority of buildings were built between 1945-1980 [1]. In the existing
building stock of around 641 million square meters, the detached houses account for
the largest share (41%). The multifamily houses have the second-largest share
(33%), while the rest of 26% belongs to premise buildings. Nearly three-quarters of
the heated areas in the Swedish building stock are older than 40 years and were built
before 1980. In fact, half of the multifamily building stock was built from 1941 to
1970, and around 60% of the premise buildings were built before 1981. During this
construction peak, numerous building components containing hazardous substances
were produced and mounted in buildings [2]. Estimating their likely presence in
end-of-life building stock before entering the waste stream is an up-to-date issue to
be addressed. To characterize their detection patterns in diverse building types,
developing a tailored approach according to their building tectonic typologies for
risk assessment may act as a starting point [3].

The goal of this work is to use building stock registers to make building and
component-specific predictions of the presence of hazardous materials. This was
done using a linked subset of hazardous waste inventories from buildings with
known detection/non-detection records as training data in machine learning models.

The opportunity to quantify detection risk according to building classes lies in the
homogeneous characteristics of the building stock in Sweden. The Swedish
dwellings are highly standardized and mostly inherited from governmental housing
initiatives in the last century [4], [5]. In spite of uniformity in architectural design,
they cannot be represented with a single reference building or a specific building
technique [4]. However, there exist patterns regarding construction and material
used in the Swedish residential building stock, especially those built in the
construction segment [6]. Systemized construction methods for exterior wall and
roof construction were recognized in multifamily houses, i.e., lightweight concrete
walls with rendered facade or concrete sandwich walls, and detached houses, i.e.,
insulated wooden walls with clay brick or wood facade [4]. Also, by pairing the
construction year, type of building materials, number of floors and apartments, one
can categorize the Swedish multifamily houses into several building types: small
house, slab block, panel block, and tower block [7]. The use of specific construction
methods and the choice of materials for a particular building type may relate to the
presence of hazardous materials to various extents. Using data mining as a
knowledge discovery tool, the hidden relationships between building parameters
from large-sized and multi-attribute sources can be generated [8].

17
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1.1.  Construction and Demolition Waste
Management

Considerable resources are used to construct, operate, and maintain buildings.
By the end of their service life, building structure and components are, in most
cases, abandoned or demolished. The conventional degrading handling process
for construction and demolition waste (CDW), such as energy recovery and
backfill disposal, leads to ineffective material value recovery. Therefore, a call
for closing the linear loop has gained more attention in the construction sector
[9]-[11]. The drivers behind the transition are a limited supply of raw materials
as well as an increasing cost of waste handling [12]. New possibilities to
facilitate urban metabolism and renewal are explored in a growing body of
literature, including material stock and flow analysis in buildings [11], [13].
However, numerous barriers in cultural, regulative, financial, and sectoral
aspects are required to be addressed to materialize a circular framework in the
built environment [14]. These are, for example, underdeveloped CDW
regulations, inconsistent data quality, incomplete reverse logistics, and low
market readiness for secondary materials [15].

Nowadays, construction and demolition waste remain the largest waste
stream, accounting for 30-40% of total solid waste worldwide [16]. Taking EU
countries, for example, 36% of solid waste can be traced back to the
construction industry, yet less than half (46%) of the CDW were recovered
(including backfilling) in 2016 [11]. Also, a huge discrepancy in recycling rate
was observed among the countries and an unrepresentative recycling rate by
taking backfilling, where waste is used as a substitute for non-waste materials
in construction, into account [17]. Even though CDW is a significant source of
secondary material, the barriers of reuse and recycling remain mainly due to
various definitions of CDW between countries, demanding coordination
between actors, and disparities in data collection approaches [17]. Another
significant impediment can be attributed to a lack of confidence in the quality
of recycled CDW materials [18].

To address these challenges and reduce the environmental impact of current
construction practice, the EU Waste Framework Directives and multiple related
action plans were established [19], [20]. The EU Communication “Resource
efficiency opportunities in the building sector” (COM 445, 2014) is regarded as
the cornerstone for the sectorial transition, where the roadmap to achieving 70%
of the recycling target in 2020 is created [21]. Under the legislative framework,
the EU Construction and Demolition Waste Management Protocol [20] and the
Guidelines for the Waste Audits before Demolition and Renovation Works of
Buildings [18] were published to accelerate the implementation of associating
measures along the waste value chain.



With the primary objectives for enhancing the market adoption of secondary
materials and reliability of CDW management practice, five interlinking actions
are formulated in the EU Construction and Demolition Waste Management
Protocol: (1) improved waste identification, source separation, and collection;
(2) improved waste logistics; (3) improved waste processing; (4) quality
management; (5) appropriate policy and framework conditions. The sequential
steps correspond to the general flow of CDW processing and require
comprehensive input from stakeholders. To exploit the potential of recycling
and reuse of CDW, the first action plays a crucial role in ensuring the quality of
the waste [2]. Identifying and removing the undesired waste fractions help
position the trajectory for a functional circular practice.

1.2.  Building Stock Information

Over time, the city composition changes constantly to adapt the society’s
development. On the one hand, the building stock study represents an integral
subject where multiple disciplines are intertwined; on the other hand, it can be
viewed as a parchment where layers of urban metabolism were capsulized along
the buildings’ lifecycle. Demolition becomes an inevitable option to adapt to
urban growth challenges, including building functionality improvement,
demographic structure change, and hazard decontamination [22]. Mining the
values from clean end-of-life buildings meets the trend of circular transition
[23]. From the perspective of resilient building stock management, the existing
building stock can be considered as a secondary resource [24]. Hazardous
material inventories is therefore a prerequisite to facilitate abatement measures
for the existing building stock [25]. For instance, Donovan and Pickin [26]
demonstrated the metabolism of the asbestos stock through material flow
modeling on a national scale, and Diamond et al. [27] addressed the policy
measures by estimating the source of PCB in the citywide building stock.
Furthermore, conducting data mining on existing building registers promotes
building stock analysis. Some registered data are digitalized and accessible in
Sweden owing to the long tradition of documentation. The registered data are
preserved by central authorities such as Statistics Sweden, Swedish Cadastral
and Land Registration Authority, Swedish Tax Agency, Swedish National
Board of Housing, Building, and Planning, and the old building documents are
stored in municipality archives and municipality museums. In the past decade,
the extensive implementation of Energy Performance Certificates (EPC) has
improved the data granularity and facilitated data comparability to a great extent
in the dimensions of building components. Previous studies have validated the
Swedish EPC data and minimized data uncertainty [28]. Fostered by data
analytics and the need for evidence-based policy instruments, the applications
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of EPC have exceeded its original intention [29]. Through adjoining
information of hazardous materials and components from the pre-demolition
audit inventories to the building database, the understanding of the presence of
such materials in the existing building stock can be enriched. By pairing the
municipal cadastral register, the real estate taxation register, the EPC data, and
the inventories of hazardous waste, new approaches for material risk assessment
in the building stock can be developed to enhance material recyclability [25].
Also, the data-driven assessment methods can complement the limited adoption
of the present environmental investigation by mapping potentially contaminated
buildings.

Several impediments are required to be overcome to succeed with data
mining in the construction sector. Among all, poor data quality of construction
datasets was highlighted in terms of missing or misleading values [30] and
insufficient validation [29]. Also, the data uncertainties can be traced back to
errors in data collection or documentation [28], as well as matching between
multiple heterogeneous data sources [31]. Improving the data reliability and
consistency of existing building require massive efforts, yet it lays a critical
foundation for building stock modeling [25]. Compared to the data quality
aspect, other essential aspects, such as knowledge interpretation and method
generalizability, are given insufficient attention [8]. Domain knowledge acts as
a means for explaining factorial correlations and bridging the gap between data-
derived rules, which guide the data mining process and transform the data
insights into scientific outputs. In data embedded case studies, having an
overarching picture on data representativeness, replication possibility, and
result applicability can improve model interoperability in other contexts. This
will benefit the validation of the results between comparative studies and thus
stimulate a good data mining practice. In short, the elements of data quality,
domain knowledge incorporation, and case representativeness underpin the
success of machine learning modeling.

1.3.  Hazardous Materials in the Building Stock

Over the years, the presence of hazardous materials has posed significant
challenges and concerns for deconstruction, renovation, and demolition projects
[2]. The unforeseen encountering of hazardous materials during renovation or
demolition requires acute decontamination, which leads to unexpected project
delays and could account for as much as 20% of the demolition cost [32]. The
fundamental problems are attributed to the opaque content description of the
building products [33], along with the complicated waste sorting process [34].
Digitalized building stock with the use of Building Information Models (BIM)
for end-of-lifecycle scenarios becomes an alternative direction for minimizing



the CDW in the future [35]. The creation of the intelligent and object-oriented
models is based on building information modeling methodology, where digital
3D models containing geometric information and non-geometric properties of
all the building elements can be created [36]. Reliable and error-free data from
BIM are considered as potential sources to simulate circular materials from end-
of-lifecycle buildings [35].

Despite of emergent evaluation of tools and inspection protocols for the
quantification or measurement of materials, their applications remain restricted
for individual buildings. In short of a global framework, the introduction of
material passport [37] and component bank (BAMB) [38], as well as BIM-
based end-of lifecycle prototypes, have currently limited application at local and
case-specific conditions [35]. Also, the disconnection between BIM and end-
of-lifecycle management tools has been reported as a hurdle to their use in the
existing building stock [39]. Alternatively, exploiting material inventories from
buildings is rather vital for paving the circular ambition forward. Developing
appropriate risk management tools to estimate the uncertainty of reusing or
recycling contaminated materials for the newly-formed circular economy chains
is necessary and urgent [40].

To overcome the limitations of BIM-based end-of-lifecycle deconstruction
applications and further incorporate risk evaluation for existing buildings, pre-
demolition audit is viewed as a viable alternative. Pre-demolition audit (or waste
audit) refers to an environmental investigation where hazardous substances and
materials are assessed prior to renovation or demolition [2]. The pre-demolition
audit process usually consists of a desk study on original building
documentation and maintenance protocols, a field survey for inventories of
hazardous waste with potential sampling and analysis. Then based on material
assessments and quantity estimation, the auditors provide management
recommendations and reporting [2], [25]. The generated inventories of
hazardous waste are not only used for material recovery, but also for planning
safe deconstruction works. Complete documentation of hazardous waste
inventories should therefore contain the following information: (1) report on the
suspect and identified hazardous components concerning their amount and
location; (2) report on potentially reusable and recyclable materials along with
estimated treatment costs; (3) market research on different options for waste
management [41]. In practice, the pre-demolition audit has been performed
mandatorily or voluntarily in several European countries. In Sweden, the
inventory of hazardous waste is obligatory with guidance on the implementation
scope, worker safety, search list for hazardous materials, and sampling
approaches [42]. Given its substantial benefits for the CDW management, the
ultimate goal is to develop a harmonized pre-demolition protocol for cross-
regional waste auditing, as well as an international auditor certification system
for contractor evaluation [2].
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Hazardous materials require special care both during onsite selective
demolition and offsite waste sorting. The risk of secondary contamination can
be minimized if building components with the primary contaminants are
removed intact before deconstruction. Therefore, regulations for safe
management and disposal of certain hazardous materials, i.e., asbestos and
PCB-containing materials or lead-based paint, [43] are imposed. Yet,
disconnected legal frameworks between CE initiatives and the EU REACH
regulation (Registration, Evaluation, Authorization, and Restriction of
Chemicals), along with the complexity of risk management between involving
actors, were substantial barriers highlighted in the literature [40].

The frequent use of hazardous materials in the past considerably increases the
risk of contaminating exposure in the existing building stock. Table 1.1 shows
an overview concerning the use and ban of particular hazardous materials in
Sweden [44]. The current environmental investigations undertaken in individual
buildings for the inventories of hazardous waste fail to address large-scaled
predictive maintenance planning. Considering the retrofit needs for the aging
post-war buildings and the corresponding growing hazardous waste stream,
developing an efficient way to screen remaining in situ hazardous material prior
to deconstruction is favorable. As a result, researchers worldwide are searching
for new approaches to quantify the extent of the contaminated building stock
[32], [45]-[47]. Acquiring this kind of hazardous material information can add
substantial values for decision-making in both policy implementation, i.e.,
decontamination and abatement, and practical utilization, i.e., deconstruction or
semi-demolition. With the ambition of improving the recycling rate of CDW
under the EU policy framework, it is beneficial for authorities to organize
initiatives for hazardous building stock decontamination. On the other hand,
property owners require the information for risk assessment in the demolition
or renovation permit application. Understanding the approximate location and
amount of hazardous materials and components in buildings allows the
estimated project schedule and cost to be better controlled.

Table 1.1 An overview of the use and the ban of asbestos, PCB, CFC, and
mercury-containing materials in Sweden [44].

1920 1930 1940 1950 1960 1970 1980 1990

Asbestos 1976: Ban of crocidolite, 1986: Total ban of all asbestos products
Pipe insulation 1920s 1986
Cement panel 1930s 1986
Tile/clinker 1920s 1976

Carpet glue 1920s 1976

Floor mat 1920s 1976

Ventilation channel 1920s 1976

PCB 1972: Ban of PCB, 1978: Last use of PCB in electronic equipments
Joint/sealant 1956 1975

Double glazing windows 1956 1977
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Capacitors 1920s 1995

Acrylic flooring 1956 1975

CFC 1990s: Ban of CFC

Fridge/freezer 1960s 1995
Building insulation 1960s  1970s

Cooling unit 1960s 1995
Mercury 1993: Ban of mercury

Relay/switch 1920s 1970s

Pressure gauge 1920s 1993

1.4. Inventory of Hazardous Materials in the
Swedish Building Stock

The concern of residual hazardous materials has long existed in Sweden. The
major Swedish residential building stock, especially multifamily houses,
inherits from the post-war era 1945-1960 and 1964-1975. These construction
periods collide with the massive use of hazardous materials, i.e., asbestos, PCB,
CFC (chlorofluorocarbon), and mercury. Due to their long lifespan and stable
properties, these hazardous materials enter the waste stream or re-contaminate
other building components after many years of deconstruction [25]. Over the
years, they have caused many delays and high decontamination costs in
renovating and demolishing buildings, as well as environmental and
occupational health risks [48]. In view of the ongoing renovation wave of the
existing building stock, along with the requirements for clean CDW for a
circular economy, characterizing the presence of hazardous materials and taking
decontamination measures in advance is rather urgent.

Since the mid-1990s, Sweden has introduced obligatory pre-demolition
audits for renovation and demolition building permit applications. The
fundamental legislations for CWD in Sweden trace back to the Building Code
(Miljobalken, SFS 2010:900), the Planning and Building Act (PBL), and the
Waste Ordinance (Avfallsforordningen). Together with the requirements for a
safe workplace during demolition and rebuilding from the Work Environment
Acts (Arbetsmiljolagen), the Swedish Circulation Council in Construction
(Byggsektorns Kretsloppsradet) published practical guidelines to assist resource
and waste management for construction and demolition projects [42]. The pre-
demolition auditing practice has resulted in considerable inventory data with a
high potential for hazardous material assessment at the stock level. Nevertheless,
these data remain difficult to access and unexplored as the environmental
information is not digitalized nor connected to national building registers. The
hardcopy or scanning pre-demolition audit documents are stored individually in
each municipality archive. Compiling these hazardous waste inventories and
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validating their quality is an enormous task, yet the work can contribute
substantial value to in situ hazardous material management.

The inventory of hazardous waste intends to pinpoint which materials and
components contain hazardous substances that require special care. Executing
a compulsory environmental investigation applies to all buildings, and the
results should be appended to demolition or control plans. The materials that
are considered human or environmentally hazardous waste can be referred to
the waste ordinance (Avfallsforordning, 2011:927) [2]. Extremely harmful
substances, such as asbestos (AFS 2006:1) and PCB (polychlorinated biphenyls)
(SFS 2007:19), have additional ordinances concerning decontamination
measures and waste disposal. The progress of CDW management is seen in
certification systems for the current building stock and qualification of auditors
[2]. For instance, the Sweden Green Building Council launched the
Environmental Building Operation and Administration Certification for the
existing buildings (Miljobyggnad iDrift) to evaluate the environmental impact
caused by materials and introduce measures to reduce waste generation [49].
An inventory of hazardous waste and a waste management plan is required for
all buildings to maximize the waste recycling potential, yet following the
industrial agreement on the Swedish Circulation Council in Construction’s
guidelines (Kretsloppsradets riktlinjer) during the environmental investigation
is voluntary [2].

1.5. Research Focus

Hazardous material identification in the existing building stock is crucial for
realizing circular construction [10]. Abatement measures for hazardous material
before deconstruction can considerably reduce the risk of secondary
contamination. Therefore, the first and foremost action in the EU Construction
and Demolition Waste Management Protocol [20] underlines the importance of
waste identification, source separation, and collection. The work in the
licentiate thesis is dedicated to method development for assessing the risk of in
situ  hazardous materials in buildings. Three intercorrelated research
opportunities were explored in the study:

The first research opportunity relates to the data availability from hazardous
waste inventories. The growing recognition of developing quality-assured
CDW management advances the legislation at the EU level, meanwhile
gradually facilitating a paradigm shift in the construction sector. A new
possibility emerges for data-enabled building material stock investigation and
mediation. Creating a dataset from the past detection records allows probing the
usability of the hazardous waste inventories for estimating the potential
presence of the remaining hazardous materials in the building stock. Screening



emergent applications and relevant data in the CDW management field are
addressed in Paper I and Paper II.

The second research opportunity concerns the possibility of assembling a
national building database with information on hazardous materials in buildings.
The methodology for merging multiple building registers and the associating
challenges have been developed and discussed in the literature [31], making the
coupling between the general information and specific information viable. The
acquired building registers can be used to construct a prediction dataset for
evaluating the risk of hazardous materials on a national scale. A workflow for
using the data from inventories of hazardous waste is proposed in Paper II.

The third research opportunity pertains to the progress of artificial
intelligence and computational power. Machine learning algorithms show a
promising capability to predict unknown examples based on the labels from past
data. With the help of supervised models, the complex causality between
predictive variables and target variables can be untangled. The previous
detection records from inventories of hazardous waste are used to draw insights
into influential factors and characterize the likely contaminated buildings.
Machine learning model development and evaluation are addressed in Paper I11.
Exploiting the three research opportunities enables identifying the potential
occurrence patterns of hazardous materials. Paper I offers insights on innovative
data-driven approaches for hazardous material recognition and management.
Paper II bridges the gaps between CDW management and building stock
analysis by adding data from inventory of hazardous waste to the generic
building stock information. Paper III tests the feasibility of using ML to
construct a prediction pipeline. The research outcomes will help the property
owners and demolition companies to plan abatement measures without
exposing them to the risk of project disruption or the health of workers. A
conceptual diagram showing how the study fits into the overarching trends is
illustrated in Figure 1.1.

Opportunity 2

Passibility of
assembling a national

Opportunity 1 building database

Availability of Opportunity 3
hazardous waste Progress of artificial

inventory data intelligence

Figure 1.1 The three research opportunities exploited for investigating the
presence of hazardous materials in the building stock.
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1.6.  Aim and Research Questions

Aim The thesis aims to understand occurrence patterns of hazardous materials
in the Swedish building stock using machine learning techniques to deliver
decision support to the relevant actors managing material circularity.

The first research question sets a theoretical background for methodology
screening in the field. The second and the third research questions elaborate on
how data mining contributes to the machine learning pipeline development.

RQ1 What are state-of-the-art data-driven applications for hazardous material
management?

RQ2 What is the potential to use data from hazardous waste inventories to
assess the risk of hazardous materials in the building stock?

RQ3 How accurate can asbestos and PCB-containing materials in specific
building classes be predicted using machine learning models?

Figure 1.2 illustrates the association between the research questions, the
appended papers, and the major themes — method screening, dataset creation,
model development, and attempted prediction.

\“.\ RQ1: Systematic literature review "
a
% P
k. " _J'(
Paper | - Method screening
Hazardous
Building registers Matched data waste Paper Il - Dataset creation
inventories
" RQ2:Data validation ~“~._
7% 1 Model 1
o s Paper lll - Model de\_.'el_opment
. and attempted predictions
B5% Model 3

RQ3: Machine learning prediction

Figure 1.2 The research process describes how the research questions entangle
with the major themes and achieve the study goal.



1.7.  Challenges and Limitations

This PhD project is deeply explorative and hypothesis-driven. It is not certain
that the patterns can be identified and used to predict the presence of hazardous
materials. In addition, there are several challenges and limitations concerning
data representativeness, uncertainty, and heterogeneity that need to be mitigated:

e Data representativeness

The primary limitation of the study involves data representativeness. The
hazardous waste inventory data were obtained from demolished or renovated
buildings; thus, the detection records could not be fully representative of the
entire building stock. To prevent the risk of false inference in the upscaling
process, the metadata between samples and large building stock was controlled.

e Data uncertainty

The secondary concern relates to data uncertainty. Since no standard protocol
exists for pre-demolition environmental auditing, the inventory types for
different building classes and the competence and experience of auditors vary.
The heterogeneous assessments from individual buildings over time challenge
the data quality and completeness. The effects of data quality and quantity on
the prediction results are visualized and minimized through matrix validation.

e Data heterogeneity

However, one should be aware that building stock study is, by its nature,
context-dependent. The prediction results may only apply to the Swedish
building stock, yet the developed machine learning approach is universal and
can be replicated to analyze the presence of hazardous material in other building
stocks. Therefore, this thesis focuses on the challenges and how they were
overcome in the method development.

1.8.  Content Structure

In the introductory chapter, the background information about building stock
information, hazardous waste inventories, and the research needs for identifying
in situ hazardous materials were illustrated. In Chapter 2, the previous research
regarding data-driven approaches and their applications in CDW management
were reviewed. Chapter 3 describes the methods for data acquisition,
compilation and validation, and their use in the machine learning pipeline. After
that, the key findings were summarized in Chapter 4 and discussed in Chapter
5, where contributions and practical implementation were highlighted. Lastly,
in Chapter 6, the conclusion and in Chapter 7, suggestions for future research
were presented.
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2. Previous Research

In this chapter, a review of the former studies that shape the research landscape of
the interdisciplinary field is presented. Two major subjects — pre-demolition audit
in construction and demolition waste management (Section 2.1) and data-driven
building stock analysis (Section 2.2) — form the basis of the research scope of pattern
identification for hazardous materials occurrence. The research gaps of hazardous
material recognition and the practical challenges in recycled material quality
assurance were highlighted and addressed by exemplifying applied machine
learning methods and their associated data at the research fronts.

2.1.  Pre-demolition Audit in CDW Management

The divergent barriers along the value chain of the construction and demolition
waste management hinder material recovery and recycling [15]. The foremost
issue concerns the high cost and time-consuming process for mixed waste
sorting [34]. Consequently, semi-selective demolition — removing hazardous
substances and part of the non-hazardous substances that could reduce the
material fraction’s quality — becomes a viable alternative to ensure secondary
material purity and traceability [12]. With the gradual adoptions of economic
incentives and legislative obligations, the concept of in situ material
management was proposed to replace conventional total demolition and offsite
sorting. Uptaking this trend, researchers develop prediction models and
assessment methods for waste generation and hazardous material identification.
The following subsections are structured as CDW estimation in the circular
economy framework (Section 2.1.1), applications of Al in Hazardous Materials
Management (Section 2.1.2), as well as approaches to hazardous material
identification (Section 2.1.3).

2.1.1. CDW Estimation in the Circular Economy Framework

The importance of pre-demolition audit to ensure a functional circular
economy framework is particularly emphasized and acknowledged by
CDW practitioners. Nevertheless, the manual process of material volume
measurement and document retrieval in pre-demolition audits demands a
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lot of time and effort. Moreover, demolition and renovation waste is usually
estimated for specific projects that may hamper the results usability and
generalization in broader applications [50]. The research gap in the CDW
estimation methods lies in low application to the existing building stock.
Often, data at the building aggregation level were lacking for old buildings,
not to mention the fact of the low availability of their BIM models [35],
[51]. Therefore, screening the empirical data from the past demolition
projects and validating data quality may be an alternative source of
information for waste analytics [50], [52].

The efforts to investigate CDW data accessibility and reliability have
been put in place in earlier research. Sdez and Osmani [15] examined the
Eurostat CDW data quality and analyzed the CDW generation and recovery
rates. The results were then used to assess the performance of selected EU
countries against the EU CDW recovery target and countrywide CDW
policy frameworks. The concern over the plausible CDW data has been
explicitly shown in terms of low data quality and harmonization. Likewise,
the prevalent problems of missing data and information barriers hinder the
decision-making for construction waste management [53]. To address the
issue of inevitable information gaps, Yang et al. [30] applied behavior-
based machine learning methods to process project-level structural missing
data from aggregated waste generation behaviors. Automatic feature
selection was applied to extract key waste generation behavioral features
and succeeded in missing value prediction (F'/ score =0.8-0.87) [30]. These
studies demonstrate the potential applications of waste data, meanwhile
pinpointing the immature development of a standardized CDW data
protocol. The essential role of CDW data in handling recycled waste should
not be overlooked.

Despite the current data limitations, new attempts have been made in
predicting CDW generation from end-of-life buildings. Obtaining the
estimated amount of waste and type of information can facilitate the short
time constraint for building material removal and recovery [50]. Supervised
learning algorithms and deep learning algorithms advance the prediction of
the amounts of recovered materials before demolition. Cha et al. [54]
developed a prediction model for handling a small dataset with mixed data
types. With few input features for different material types, the patterns for
predicted and observed values can be recognized. The developed random
forest (RF) models were of practical use when available data was limited,
yet the robustness of the RF models needed to be verified with a larger data
size [54]. On the contrary, the deep neural network (DNN) was tested by
Akanbi et al. [50] for a similar study objective. By employing basic features
of buildings to the DNN models for recyclable, reusable, and landfill waste
materials, high-performance accuracies were achieved through evaluating a
case study from a building given four archetypes — concrete, masonry, steel,



and timber [50]. In summary, the state-of-the-art predictive models
contribute to data gap filling and support decision-making during the
hazardous waste inventory practice.

2.1.2. Applications of Al in Hazardous Materials Management

Holistic approaches were explored to address the integration of
sustainability and safety aspects for effective hazardous material
management. To address the risk of chemicals retained in the material
cycles or re-entered in the environment, Bodar et al. [40] proposed a safety
decision scheme to enable risk evaluation of chemical products and wastes
in the circular loop for stakeholders. The bridge between EU legal
frameworks, such as Registration, Evaluation, Authorization, and
Restriction of Chemicals (REACH) and Substance of Very High Concern
(SVHCs), and their interfaces with circular economy required to be
constructed [40]. Furthermore, a disaster-response program for asbestos-
containing material (ACM) management was established by Kim and Hong
[55] to enable practical information transmission. Through a six-fold case
study, the location and dismantle priority of the buildings with ACM, the
types and quantities of ACM, as well as the asbestos fiber and greenhouse
gas emission for ACM removal, were investigated [55]. From these
examples, a shift of hazardous material management from traditional
contaminant monitoring and abatement to precautionary principle-
embedded risk management is observed.

To progressively increase material recycling rates while keeping the
material loop clean requires a synergy between building stock management
and an adapted demolition process. The adoptions of BIM and Geographic
Information System (GIS) allow stock material information retrieval for the
single building or the built environment in the city as a whole [35]. Hence,
Raskovic¢ et al. [25] evaluated data collection methods to obtain input data
for as-built building information modeling. Their findings showed that the
demolition-related information could be extrapolated and used to enrich the
existing building information databases by incorporating the building
material assessment methods and geometric data capture tools. A case study
in a test building was presented to illustrate the proposed workflow of
merging geometric information and pre-demolition audit information for
3D modeling. A bottom-up approach of data collection and model
development for the existing building stock provides more detailed
characteristics; thus can be more suitable for deconstruction and selected
demolition in practice [25].

2.1.3. Approches to Hazardous Material Identification
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According to the EU Construction and Demolition Waste Management
Protocol, quantifying in situ hazardous materials consists of— material
identification, source separation, and onsite waste collection. The previous
studies regarding hazardous material identification can be approached from
top-down and bottom-up perspectives. Remote sensing within the
geomatics and information field allows efficiently quantifying suspect
hazardous materials from aerial, hyperspectral, or multispectral images
[56]. The method for recognizing asbestos-cement roofing using
multispectral imaging and field inventory was validated by Fiumi et al. [56].
Around 89.1% of general accuracy was attained for material classification
in the cross-comparison study. Comfirming the method’s potential, a
similar study was conducted by Wilk et al. [57] to identify the critical
factors associated with the amount of asbestos-cement roofing, laying a
foundation for asbestos stock estimation in Poland. Regional asbestos-
containing cement roofing was mapped out by matching the aerial or
satellite images and the field inventories [58]. The number of individual
farms in the village, the distance to the asbestos manufactural plants, the
building age, as well as local social-economic situation affect the use of
asbestos-cement [57], [58]. Strong spatial clustering was found between
malignant mesothelioma, a deadly tumor cancer caused by asbestos
exposure, and the location of asbestos manufacturing plants in the
geostatistical analysis [59]. By employing these features in the random
forest models, the prediction map of the spatial distribution of asbestos-
containing materials (ACMs) at the national level can be constructed [58].
Further on, Krowczynska et al. [60] tested deep learning algorithms, i.e.,
convolutional neural network, for aerial photographs classification of
asbestos-roofing and achieved comparable accuracy rates.

However, remote sensing is limited in identifying broad assortments of
hazardous material since many of them are visually unrecognizable [43].
Intrusive sampling and lab analysis are rather common ways when
experience-based material diagnoses are not applicable. The detection
records from pre-demolition audit inventories and the hazardous material
description databases become valuable sources for data-driven studies.
Through accumulating various input data from individual buildings in the
citywide demolition database [32] and a questionnaire in a mobile
application for assessing suspected asbestos materials [45]-[47], the likely
contaminated building components in the residential environment can be
pinpointed. Statistical methods and ontology-based approaches have also
been adopted for this purpose. The previous empirical studies showed the
prevalent occurrence (82.5-95%) of asbestos-containing materials in
residential buildings [32], [45]. However, the detection frequency of
specific asbestos components varied substantially from country to country
[32], [45]. The identified asbestos type is primarily nonfriable chrysotile



[32] with a low potential for disturbance and removal priority [45] for
residential buildings. Characterizing the extent of in situ hazardous
materials can facilitate decontamination work planning before
deconstruction or demolition. Other than using sampling approaches,
Mecharnia et al. [61] developed an inference approach for predicting the
probability of asbestos-containing materials based on temporal descriptions
of the marketed products. Evaluating the method on actual data showed
promising prediction results concerning the presence of asbestos suspecting
products, locations, and structures in buildings.

With respect to source separation and onsite waste collection, the
detection methods for optical identification of hazardous material and
mineral images were established. An unsupervised learning algorithm, i.e.,
principal component analysis, was combined with hierarchical clustering
analysis to separate asbestos-containing materials from the rest of CDW
[62], [63]. A hybrid of supervised learning algorithms, i.e., support vector
machine, and deep learning algorithms, i.e., convolutional neural network
and multi-perceptron, also proved to be effective for CDW image detection
[64]-[66]. However, low prediction rates were obtained in predicting
recycled aggregates due to object variabilities, as shown by Anding et al.
[67], [68]. Overall, Kuritcyn et al. [66] confirmed that the non-invasive
image processing methods improve hazardous material recognition in
selective demolition, meanwhile enhancing the safety in the recycling
process of CDW.

2.2.  Data-driven Building Stock Analysis

Technological convergence provides a new perspective for building retrofit and
demolition, which are the constant activities taking place under legislative
requirements and demographic dynamics. Emergent building stock data and the
use of computation tools extend the scope of building stock analysis to an
unprecedented degree [69]. Various information collected along the building
lifecycle, from design, construction, commissioning, operation, and
maintenance to retrofit, can be interlinked to enrich the building database. This
section reviews the former research on building stock data screening and
validation (Section 2.2.1), then highlights machine learning applications in the
building stock analysis (Section 2.2.2).
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2.2.1. Building Stock Information Screening and Validation

Data mining applied in the construction industry has led to an exponential
growth of knowledge development in recent decades [8], [53]. Built upon
the techniques of statistics, machine learning, and pattern recognition, it
enables rules, correlations, relationships, and anomalies detection from
unstructured and complicated data sources [70]. One of the principal
sources, Energy Performance Certificates (EPC), underpin the EU building
stock data owning to its comprehensive coverage, standardized scheme, and
long-time span records [29]. Since its introduction in 2017 up to the launch
of the second version, roughly 82% of buildings in Sweden are covered with
the mandates [28]. Therefore, EPC has been used as a core data source to
connect with other registered data, including building footprints [31],
multifamily property and building data [31], [71], occupant socio-economic
data [72], [73], and spatial information [56], [58]-[60], [74], to create a
deeper understanding of varied thematic areas within building stock
analysis. From the divergent lenses, scientific consistency can be controlled
by evaluating the associations between identified patterns and domain
knowledge [75]. However, the variant versions of measurements,
aggregation levels, and updating frequency can put the matched data quality
under question [53]. More efforts are required for harmonizing the
differences to construct a trustable dataset.

Over the past decade, the diverse applications of EPC have expanded
beyond its original intention to inform the actors in the building sector about
building energy performance [29]. For example, the high potential was
highlighted for using EPC data to untangle the causal relationship between
building energy demand and other factors [76], as well as creating an
overview and validating building stock models [28]. However, in the
analyses of the performance gap between estimated and actual energy
performance, the uncertainty and value discrepancy of EPC data were
highlighted in the earlier research, specifically, heated area measurements
[28], energy consumption, and energy conservation assessments [77].

Accordingly, Pasichnyi et al. [29] developed a data quality assurance
method to fill in the gap of fundamental attributes to data accuracy and
consistency. The proposed six validation levels refer to earlier efforts from
Simon [78]: data structure check for limiting missing values, consistency
check between values and records, comparative appraisal between dataset
revisions, check between original data sources, check between domain, and
lastly, check between data collectors using the shared keys. Their findings
suggest that using auxiliary data can expose the underlying data problems,
facilitating initial data quality control during data collection, data cleaning,
and processing in data analyses. In relation to this, the EPC should be
further refined to include the data quality parameter for its features [29].



Appending this metadata helps address data uncertainty due to defective
data collection instruments, multiple sources, data entry errors, and avoid
preprocessing time for data noise removal, suggested by Yan et al. [8].
General criteria on data reliability, completeness, consistency, and
resolution are expected to enhance the overall data quality in the
construction industry.

2.2.2. Machine Learning Approaches in the Building Stock Analysis

Machine learning, an application of artificial intelligence that features an
automatic system learning from data and generates knowledge, offers a new
perspective to building stock analyses [8], [69]. The applied machine
learning approaches enable building stock analysis to overcome several
barriers. Firstly, the capability to identify underlying relationships from
small datasets. The fact of scarce data in the construction sector is a
bottleneck to foster building stock analysis. The difficulty to access reliable
data [8], resource-demanding data collection and processing, hard-to-
recover missing data [30], and class imbalanced data [79] hinder the
development of the field. Nonetheless, machine learning techniques enable
pattern identification from historical records to predict future developments,
making them promising tools for decision support and automation [80].

Next, various machine learning algorithms can process heterogeneous
data types and amounts that those traditional statistical methods fail to do
[8]. The learning settings duo regression and classification enable machine
learning algorithms to untangle the complex relationships between numeral
continuous and categorical variables, as well as text or image data [81]. The
high flexibility of machine learning for input data results in extensive
applications in most fields; building stock analysis is not an exception [69].
Leveraging the statistical learning from the subset of observations, the
performance of predictive algorithms exceeds the rule-based control
without the need to explicit the thorough assumptions [82], [83]. Finally, by
linking various dimensions of building stock analysis with the input from
environmental [84]-[86], economic [87], and social data [31], [72], [73] to
machine learning models, a more holistic picture of the present, past, and
future status of the building stock can be developed.

However, drafting a clear problem statement is a prerequisite for the
creation of machine learning models. Understanding the strength and
weakness of each algorithm is more likely to achieve optimal prediction
results for the intended purpose. Generally, three learning methods are
classified according to the learning problems and available data —
supervised, unsupervised, and reinforcement learning [81]. Supervised
learning, including support vector machine (SVM) and artificial neural

35



36

network (ANN), were found to be common methods for building
simulation, diagnosis, and probability assessment when data labels are
accessible [80]. The SVM and logistic regression classifiers were applied
by von Platten et al. [6] to predict buildings features for energy efficiency
strategies. In the study, data from the Swedish Land Survey, EPC and,
auxiliary building observations from Google Street View were used as input
to estimate specific building typology for multifamily houses. Similarly,
classification purpose of prediction has been seen in a wide range of
thematic areas, for instance, categorizing energy poverty risk based on
socio-economic data by Longa et al. [72] and leveling the importance of the
features for predicting building use and performance based on smart meter
data by Miller [88].

Unsupervised learning for data transformation and clustering is often
applied to building certification, such as building energy performance
benchmarking based on building features shown by Gao et al. [89], or
buildings’ envelopes performance evaluation from infrared thermography
field survey, climate and energy consumption data presented by Wang et al.
[90]. Unsupervised algorithms are also seen to be combined with supervised
learning algorithms for data preprocessing, particularly for data
stratification and dimension reduction. Common techniques are for
instance, principal component analysis (PCA), multiple correspondence
analysis (MCA), k-means clustering, and k-medoids clustering. Kropat et
al. [91] conducted a predictive mapping of indoor radon concentrations with
k-medoids clustering for automatic classification, then used the random
forests and the Bayesian additive regression trees for prediction.

On the other hand, reinforcement learning, featuring using agents to find
optimal solutions in a predefined environment, is mainly employed in
emergent monitoring or control studies [69]. Chen et al. [82] developed an
optimal control decision model to regulate heating, ventilation, air
conditioning (HVAC), and window systems to minimize energy
consumption and thermal discomfort. The reinforcement control is proved
to be more efficient than heuristic control and can immediately adapt to the
changing environment. Finally, the deep neural network has been adopted
extensively in many building stock thematic areas [80], including energy
consumption [92] and regional energy market forecast [93], solar radiation
[85] and photovoltaic (PV) power production [94], optimization of cost and
CO; emission in the integrated energy-water consumption models [84], as
well as demolition waste prediction [50]. It gains popularity for the ability
to create new task-specific attributes from data representations [95], as well
as the capacity to identify complex structures or relationships in high-
dimensional data [50]. Leveraging the insights from these examples, the
applied machine learning methods have been used to affirm analysis results
from conventional approaches and further facilitate evidence-based



decision-making [6]. High flexibility in data aggregation level and
operationality of time series data make machine learning a suitable method
to study the existing building stock [69] since it is hard to characterize its
features due to insufficient and incomplete building documentation [25].

The presence of hazardous materials in the built environment is one of
the complex and longstanding problems. Even though the use of hazardous
substances has been prohibited and regulated since the 1970s in many
countries, the exposure risk remains in buildings’ operation and post-use
phases due to insufficient understanding of hazardous materials occurrence
patterns [25]. In regard to this, short-term remediation strategies, such as air
concentration monitoring [96], and long-term decontamination measures,
for instance, semi-selective demolition [12], become a conventional
practice to control the risk of in situ hazardous materials. However, with the
need for improving the purity of recycled materials in a circular economy,
a more comprehensive and cost-efficient approach is required to
characterize the detection of hazardous materials [15]. Recent studies that
trained supervised and deep learning models on remote sensing data
accomplished large-scaled asbestos-cement roofing screening and
estimation [58], [60]. Yet, the studies of asbestos-containing materials at
the building level remain only on statistical quantification [32], [45].

The research gap for using machine learning algorithms to locate the
possible detection of hazardous materials in the building stock is identified
[61]. Another research area, namely employing EPC data and other
building-relevant registers for the prediction of hazardous materials, is also
unexplored. The possibility of applying machine learning methods and the
potential input data requires to be further investigated. By using data mining
on the past detection records for the binary classification, the risk of
encountering hazardous materials in the entire, not yet inventoried building
stock can be evaluated.
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3. Research Methodology

The study design of the sequential work on applied machine learning method
development with the focus on in situ hazardous material identification is described
in the following section. It consists of a literature study to obtain an overall picture
of the status quo of machine learning applications in hazardous building material
management, summarized in Paper I, as well as an empirical study on developing a
hazardous material dataset and a machine learning pipeline specific for the study
objectives, synthesized in Paper II and Paper III. Accordingly, the chapter begins
with a description of the systematic literature review to map out the main findings
and development of the field (Section 3.1), then continues with presenting the work
on data assembling and validation (Section 3.2). Finally, a proposed method for
structuring a machine learning pipeline is described together with the demonstration
of two prediction cases (Section 3.3).

3.1.  Systematic Literature Review

A systematic literature review was done to identify, select, and evaluate earlier
research work on data-driven applications for hazardous material management.
The method for conducting the search process was described in Paper 1. Figure
3.1 illustrates a two-fold review procedure of science mapping (Section 3.1.1)
and critical review (Section 3.1.2). Science mapping quantitatively measures
the domain development by computing the metadata of the literature, while
critical review concerns qualitative synthesis on the content of the publications.
Engaging both elements in a systematic literature review is necessary for a
comprehensive research appraisal. The outcomes of the science mapping offer
a deeper understanding of the core research activities, conceptual and
intellectual structures of the publications. Based on the highly relevant literature,
a number of relevant machine learning applications for hazardous material
identification, separation, and collection were highlighted.
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Figure 3.1 The review procedure consisted of two consecutive parts: science
mapping and critical review.

To begin with, a structural review plan was designed to enable a transparent
and reproducible literature search, including a pronounced search strategy,
predefined assessment criteria, and information analysis tools [97]. Online
generic databases were used for the initial search, then complemented with the
snowball search on the secondary literature from citation lists of the acquired
documents. The goal for the initial search was to screen as many relevant
articles as possible, while the complementary search was undertaken to refine
the search relevancy. Two search engines — Web of Science and Google
Scholars — were used as they contain interdisciplinary publications with a broad
timeframe and language choices. However, they curate information with
distinctive logic. Web of Science is an expert-based database containing
publisher-neutral, peer-reviewed academic papers, whereas Google Scholars is
a robot-based document retrieval platform featuring high adaptability in full-
text searches on any document type. The differences imply that the search
results from Web of Science may be more rigorous and reliable, yet it may
overlook heterogenous but relevant documents. Hence, using the exact search
term on Google Scholars again can avoid the risk of missing up-to-date articles.

The search terms — ‘“hazard”, “artificial intelligence (Al) or machine
learning”, and “building” — marked with wildcard expression combined with
Boolean operators were used for literature query on Web of Science. The search
results returned English-based literature, including articles, proceeding papers,
reviews, conference papers, with the search terms in their title, abstract, author
keywords, and frequent-occurring reference keywords without a specific
timeframe. The extensive search scope was preferred over the traditional
keyword search to have an overarching examination of the document’s
relevancy. After obtaining the first batch of literature, an iterative refining
process on the search terms was undertaken to exclude the irrelevant search
results. Then the refined search phrases and the same search process were



repeated on Google Scholars to identify the articles left out from Web of Science.
Appending these documents and the secondary literature from citation searches
to the initial literature pool, the basis for the science mapping was outlaid. An
overview of the search scope and process involved in the literature retrieval can
be referred in Table 1 in Paper L.

After that, a quick paper screening on titles, keywords, and abstract was
performed to level relevant literature based on the following assessment criteria:
(1) the high relevant group contains the study scope about hazardous building
materials AND Al/machine learning, (2) the medium relevant group involves
either hazardous building materials OR Al/machine learning and (3) the low
relevant group concerns the umbrella terms of Al in the architecture,
engineering and construction industry, CDW management, and circular
economy. The purpose of the article clustering was to delimit the core literature
to the interdisciplinary subject for further content analysis in the second part of
the literature review.

3.1.1. Science Mapping

Science mapping, a kind of bibliometric analysis describing the research
evolution in the study domain, was implemented on the acquired documents
[98]. The bibliometric analysis provides insights on the research centrality
regarding research terms, key references, and the associated citation
networks in the hazardous materials field. Through computing the metadata
of documents into the R programming language-based bibliometric library
Biblioshiny, the contextual and intellectual relationships between the
publications can be visualized. Various metrics were considered during the
information processing and presentation. The first metric relates to research
development quantification. Through plotting the number of the research
activities over the years and their thematic distribution, an integrated
perspective regarding research evolution can be created. The results can be,
for example, an accumulative number of publications in the field, literature
proportion across disciplines, and so on.

The conceptual structure, concerning the dynamic growth of the concepts
and topics, was the second metric. The co-word analysis and the word
dynamic analysis show the centrality of the field, as well as the association
between research terms. Lastly, the intellectual structure appertains to the
shift of research paradigm between the different generations of researchers.
It focuses on citation relationships between articles, presented in the formats
of a historical direct citation network and a three-field plot. The former is a
historiographic mapping with the time dimension, and the latter correlates
authors, keywords, and publication outlets using a Sankey diagram.
Combining the results from the research development, the contextual
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structure, and the intellectual structure, various angles to approach the
scientific landscape were presented.

3.1.2. Critical Review

Based on the results from science mapping, parts of the PRISMA principles
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
were applied to the literature classified high and middle relevancy for
critical appraisal. The PRISMA statement is a comprehensive protocol
evaluating the main sections of the article for critical review, including title,
abstract, methods, results, discussion, and funding sources [99]. By
following the structural information reporting system, the outcomes from
the article comparison can be more objective and transparent. The
information collected from the exercise was compiled in an excel file for
prompt retrieval. In addition, extra efforts were allocated to the method
section to identify machine learning techniques and input data applied in
highly relevant papers. The contexts for specific machine learning
applications and the limitations were underlined to answer Research
Question 1. Afterward, a critical review on how these approaches can
contribute to implementing the EU Construction and Demolition Waste
Management Protocol was initiated and discussed. A summary of their
study purposes and contributions is provided in Appendix A and B of Paper
L.

3.2. Data Assembling and Validation

The method for assembling and validation of building-specific information was
explored in Paper 11, which is also regarded as a basis for Paper II1. The critical
review of the early literature suggests a few pioneering studies that employed
field data and registered data for asbestos-containing material mapping in the
field [58], [60]. The potential of using registered data and the inventories for
hazardous waste from pre-demolition audit for hazardous material prediction is
investigated in the section. Due to the lack of a hazardous material database, a
hypothesis-driven data screening process was commenced with support from
domain experts. The idea was to collect the past hazardous material detection
records into a database of hazardous waste inventory and extract the information
as data labels to train machine learning models, described in Section 3.3.
Meanwhile, creating a comprehensive national building register database that
encompasses available building registers and matches partial data with the
hazardous material database for model training, validation, and prediction. The



rest of the national building register database will be held-out for later prediction
when the final models are deployed.

This exploratory process for data assembling and validation, a point of
departure for Paper II, is described in Figure 3.2 and contains three main parts:
(1) Data collection for the database of hazardous waste inventories and the
national building register database (Section 3.2.1 and Section 3.2.2), (2) Data
matching between two data sources for a harmonized hazardous material dataset
(Section 3.2.3), (3) Data validation including delineating complete observations
from outliers, low quality, missing values to be able to set up a final dataset for
machine learning pre-processing (Section 3.2.4). Through creating a hazardous
material dataset, the possibility of assessing occurrence patterns of hazardous
materials in the existing building stock can be investigated. The compiled
hazardous material dataset and the proposed database assembling procedure
contributes substantially to the method development of in situ hazardous
material management.

Database for hazardous
National building register database ]
g reg wasle inventory
A

Pre-demolition| 1. Data collection
audits

Buildi Inventories of
5 UIistI(:rgs Matched data hazardous
e waste
. 2. Data matching
......... — g =
T T e
.a""""“’ P —
i
o Predictive ;
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o Building Hazardous Hazardous
3 parameters substances materials

3. Data validation

Hazardous material dataset

Figure 3.2 The diagram illustrates how the hazardous material dataset was
created with a three-step procedure: (1) data collection, (2) data matching, and
(3) data validation.
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3.2.1. Database of Hazardous Waste Inventory

Inventories of hazardous waste from the pre-demolition audit of the
demolished and renovated buildings are valuable data sources for hazardous
material detection [32]. These field data remain unexplored in Sweden
because of effort-demanding work to collect and structure the information
mainly archived on hardcopy. Besides, they are scattered in each
municipality as supervising the pre-demolition audit execution is the
responsibility of the local authority. The first batch of hazardous waste
inventories was gathered from the Gothenburg City Archive in summer
2020 for demolition and renovation permit applications applied between
2010 and 2020. Without the availability of a digital demolition database,
the query was carried out manually in a general building permit register
system by using the keywords “demolition”, “renovation”,
“reconstruction”, “modification”, and “alteration” in the permit application
descriptions. The descriptions indicate what the application concerns and
which class the building is. The search returned the demolished or renovated
buildings that potentially had undergone a pre-demolition audit process.
After that, following an extensive document screening to retrieve pre-
demolition-related documents. Then the records from the inventories of
hazardous waste and the requested scanned copies were read, relevant
information extracted, compiled, and reformatted into an excel sheet.

Iterating the same data collection process, the second batch of inventory
of hazardous waste documents was gathered from Stockholm City Archive
in summer 2021. Searching with the national real estate index in the digital,
public accessible building permit database returned all the past
interventions in the properties. By tracing the building history, one can
obtain more certain construction years and architectural drawings for the
area and floor estimation of the old buildings, which were critical variables
for predicting the presence of hazardous materials [61]. This auxiliary
information was critical for filling information that was missing in the
inventories of hazardous waste.

The available pre-demolition audit documents from Gothenburg and
Stockholm cities were stored in the database of hazardous waste inventory.
The inventories can be generally grouped into four document types
according to their document titles and content formats. Various data
granularity and comprehensiveness of hazardous substances and materials
were recognized, of which reports, protocols, control plans, and demolition
plans were listed in descending order. Detailed inventories, including
reports and protocols, contain records of hazardous material detection,
whereas simple inventories like control plans and demolition plans only
keep information at substance level, and the scope of the investigation was
not defined. Reports are the most thorough documentation of an inventory,



following the detailed list of hazardous material inspections from the
Swedish  Circulation  Council in  Construction’s  guidelines
(Kretsloppsradets riktlinjer). Reliable detection records from lab test
samples were documented by environmental consultants for complicated
buildings, for instance, multifamily houses, schools, industrial buildings,
and so on. Usually, the information about the investigated buildings was
provided. Contrary to reports, protocols derived from the municipality
template comprise a list of binary options for hazardous materials and their
amount. The surveyed building parts and the scope of the investigation are
indicated for all building classes.

On the other hand, control plans are designed specifically for single-
family houses or simple buildings. The tabular format contains information
on primary hazardous substances, i.e., asbestos, PCB, CFC, mercury.
Demolition plans are required documents for demolition permit
applications for general control purposes, in which free text is used to
describe the detection of hazardous substances or materials, but it is hard to
determine the investigated scope and actual area. Considering the
distinctive data quality and information availability, reports and protocols
were preferred over control plans or demolition plans if both documents
were available for the same buildings.

3.2.2. National Building Register Database

Central authorities own and maintain national building registers such as real
estate data, energy measurements, and population statistics. Compiling
generic building registers can facilitate information comparison and
supplementation across data sources. The method for merging nationwide
datasets referred to Johansson et al. [31] was executed with GIS Feature
Manipulation Engine from the Safe Software [100]. Three data registers
were assembled into a national building database — the Swedish real estate
taxation register and the municipal cadastral register [101], as well as the
Swedish EPC register [102].

First of all, the Swedish real estate taxation register and the municipal
cadastral register were requested from the Swedish Cadastral and Land
Registration Authority. The Swedish real estate taxation register, as shown
in Appendix A Table A2 in Paper II, was originally derived from the
Swedish Tax Agency, where building ages and floor areas are kept updated.
While the municipal cadastral register, shown in Appendix A Table A3 in
Paper II, contains similar data but is reported by each municipality
separately for all types of buildings. Apart from the basic building
information, detailed building usage and legal status are provided.

Subsequently, the EPC data were requested from the Swedish National
Board of Housing, Building, and Planning. Since the national EPC
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regulation was implemented in Sweden in 2007, the property owners are
obliged to obtain EPC for buildings prior to a sale issued, with rent purposes,
frequently visited by the public, or newly built [103]. Yet, in some cases, a
joint EPC may be issued to similar and adjacent buildings due to collective
energy use measurement. The issue of EPC is valid for ten years and
requires renewal after that; thus, the updated EPC was released in 2017.
Over the years, more than 90% of the Swedish multifamily houses have
EPC [31]. Since the renovation and demolition building permits were
collected for the study spanning over 2010-2020, both early and renewed
EPC were obtained. An overview of the EPC concerning building features
is illustrated in Appendix A Table Al in Paper II.

The national building database was constructed at the building level to
match the observations in hazardous waste inventories; thus, the municipal
cadastral register became the base layer of the database. However, key
variables such as area, construction year, renovation year, and value year of
this register have not been updated in the recent ten years and are reported
incomplete by Johansson et al. [31]. On the other hand, the most reliable
data source was the real estate taxation register. Yet, the registers were at
the value unit level, which, in most cases, follows the property level.
Therefore, the first step was to merge the municipal cadastral register and
the Swedish real estate taxation register using the national real estate index
as the key. This implied that duplicates were introduced when a building
was matched with the real estate taxation register more than once. On the
contrary, a building can also share value units with other buildings.
Therefore, two attributes — the number of value units for a property
(AntalVardeEnhet) and the number of properties for a value unit
(AntalFastigheter) — were created namely to track the duplicates and the
shared value units at the building level.

In addition, the total number of possible matching relationships for all
building classes, presented in Table 3.1, were also included in the database
as auxiliary information to control data matching quality between the
hazardous waste inventory database and the national building register
database, as well as add another dimension for data analysis. Based on the
combination types, the matching uncertainty was investigated between
building classes in the real estate taxation register for the major economic
regions in Stockholm, Gothenburg, and Malmo, Sweden [104], shown in
Table 3.2. It was found that small houses have the highest proportion of the
1 - 1 matching relationship, while warehouses, industrial buildings, and
production buildings have a high number of other relationships, i.e., 1 - n,
m - 1, and m - n. School data was lacking from the real estate taxation
register due to tax exemption. Having a high percentage of other
relationships indicates complex properties, leading to uncertain matching.



Table 3.1 The total number of possible matching relationships.

Combination Description

1:1 One property belongs to a single value unit

I'n One property belongs to several value units

m:1 Several properties belong to one value values unit
m:n Several properties belong to several value units

Table 3.2 The total number of possible matching relationships for the real
estate taxation register based on the major economic regions in Sweden.

Table 1:1 [N] Others [N] Others [%]
Multifamily house 24 504 3787 13,4
Commercial building 22 098 4108 15,7
Industrial building 1330 327 19,7

Office 5224 940 15,2
Warehouse 5111 1919 27,3
Production building 4067 904 18,2
Single-family house 455 368 18 655 3.9

The second part of the merging related to concatenating the EPC data
with the newly formed real estate taxation register and municipal cadastral
register database. EPC data was structured according to the EPC index
(Formular ID), which can attach to one or more properties with one or more
buildings. In most cases, a building only belongs to one valid EPC index,
but it may belong to one or more historical EPC indexes. By including all
available EPC indexes, the analysis in Table 3.3 was conducted at the
property level; namely, one or several buildings exist in the dataset. The
finding shows that most EPC indexes have a 1 - 1 relationship and contain
only one building. However, to prevent confusion, four attributes were
added to clarify the relationship between the number of buildings and
properties for each EPC index: the total number of buildings in an EPC
(EPC_AntalByggnader), the count of EPC for a property (EPC_AntalEPC),
the total number of properties in an EPC (EPC_AntalFastigheter), the
relationships on the properties based on different combinations
(EPC_Relationsklass).

Table 3.3 The distribution of the total number of possible matching
relationships at the property level based on the EPC data in the major
economic regions in Stockholm, Gothenburg, and Malmo, Sweden.

Combination Description No. properties
1:1 One property belongs to a single EPC 140 759 (80,7%)
I'n One property belongs to several EPC 32 725 (18,8%)
m:1 Several properties belong to one EPC 826 (4,7%)

m:n Several properties belong to several EPC 32 (0,02%)
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It is critical that various granularity levels are handled with care and
matched in a correct way. The current register data contain different
aggregation levels for EPC index, building, and taxation value unit, of
which value units are sometimes virtual units that are difficult to relate to a
specific building. Nevertheless, a true match can be achieved if the EPC
index is 1 - 1 and the value unit is also 1 - 1 in the case where the EPC index
only has one building. However, it is often possible to puzzle and link one
value unit to a building — for instance, a property with two buildings, one
single-family house, and one multifamily house. The area from the
multifamily house table in the real estate taxation register should be
connected to the multifamily house, and the single-family house connected
to the respective small house table.

3.2.3. Data Matching Between Databases

The acquired data was processed based on the data operation procedure
referenced from Simon [78] and Pasichnyi et al. [29] to generate a
hazardous material dataset. Table 3.4 describes six consecutive steps that
were followed to ensure coherent data documentation and storage. A tabular
dataset structure was created to assemble common variables between
hazardous waste inventories, such as type of inventory, investigation year
and scope, auditors, decontamination history, detection of hazardous
substances and materials. The goal is to harmonize different detail levels of
the documents without sacrificing too much of the data granularity.

Table 3.4 A data operation procedure implemented for matching and
validating a hazardous material dataset.

# Data operation  Description

0 Dataset structure ~ Assemble common variables between hazardous waste inventories
and use “building” as an observation unit.

1 Data control Quality control of hazardous waste inventories based on buildings
construction year and investigation completeness.

2 Data conversion  Convert hazardous waste inventory records to machine-readable

data formats, i.e., “nominal”, “scale variables”, and “ordinal.”, and
compile them into a digital hazardous material dataset.

3 Data extraction Retrieve the building registers from the national building database

with the national real estate index from the observed buildings in
the hazardous material dataset.

4 Data matching Use the national real estate index as the key to establishing a one-

to-one matching between the extracted building registers and the
observed buildings in the hazardous material dataset.

5 Data revision Check consistency between building registers and inventory data,

harmonize variance and revise the matched variables.
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Next, examining the eligibility of the investigated building and remove
data from low-quality hazardous waste inventories. The earliest prohibition
on the use of PCB and asbestos can be traced back to 1973 and 1975 in
Sweden. Yet, the access to PCB and asbestos contaminating building
materials from import and market circulation continued until 1982.
Therefore, buildings built before the 1980s may be exposed to contaminants
and are of interest for including in the hazardous material dataset. Detection
records of asbestos, PCB, CFC, mercury, and radioactive concrete, due to
the risk of radon, were documented as hazardous substances and hazardous
building materials in a binary manner. After that, the quality and the
completeness of hazardous waste inventories were controlled to prevent
falling into the trap of a skew dataset. Considering the operationality of
classification models, the extracted information from the hazardous waste
inventories was converted into machine-readable data formats. Lastly,
compiling these transformed observations into a hazardous material dataset.

To verify the interpretation results of the hazardous waste inventories,
ten properties were selected for an observation validation exercise from the
list of renovation and demolition projects in Gothenburg based on the
diversity of inventory types, building classes, and building complexity. The
same observation template and pre-demolition documents for the chosen
properties were distributed within the research group. The template adopted
the same structure as the hazardous material dataset that constituted general
building information and detection results. After collecting individual
observations, the compiled results were employed to a validation metrics,
where every two individual observations were paired to a total of 6 sets of
comparisons in a scoring system to understand the degree of agreement and
divergence in interpreting raw data.

The wvalidation exercise of inventory interpretation revealed the
importance of using uniform documentation in the correct interpretation of
pre-demolition documents and an agreeable data recording workflow. The
disagreement on interpreting the missing values and uncertain investigation
results, such as presumable or experience-based positive, was highlighted.
According to the results of the validation matrix in Appendix A, around
72% of disagreement was shown in the results from 5 participants. However,
the disagreement on variables varied: (1) the most profound agreement was
on construction year, detection of asbestos and pipe insulation; (2) medium
agreement was on investigation scope, detection of PCB, mercury, lighting
tubes, sealants, capacitors in lamp or burner, door or windows insolation,
carpet glue; (3) the least agreement was on CFC and the rest of materials.
Confusion between “no detection” and “missing values” was the primary
reason for discrepancies. A case-by-case check on the highly disagreeable
variables was further conducted to understand the causes in detail. It was
found that how the detection results were displayed played a critical role in
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interpretation. If the detection results were listed explicitly in a tabular
format or on a building basis, misunderstandings are less likely to happen.
Yet, if an inventory concerns several buildings in complex properties such
as schools, hospitals, industrial buildings, or multifunctional buildings, it
tends to result in confusion or misleading interpretation. The results from
the validation exercise indicate that improvement was needed to assure
result comparability; thus, the entire process of documenting raw data from
inventories of hazardous waste was repeated with new, more strict routines
for interpretation.

The next step was to add general building information from the national
building database to the hazardous material dataset. Firstly, the building
registers of the observed buildings were retrieved with their national real
estate index and used as the key for creating one-to-one relationship
matching. Google Street View, hitta.se real estate map [105], and the GIS
for regional buildings were adopted as auxiliary sources to check that the
building registers correspond to the observed building. The issues for
unmatched observations were classified with different match codes, such as
too little information to determine the correct registers, several inventory
observations shared one register, eliminated registers due to building
demolition, or unmatched data. Depending on the extent of information
loss, uncertain observations and observations without building registers
have been removed from the dataset to be used for machine learning
modeling.

As the variables such as construction year, renovation year, and area
appeared in all data sources, the selection of the registers was based on value
alignment to the inventory data. But if the values were not identical, the real
estate taxation register and the EPC data were preferred over the municipal
cadastral register considering their update frequency and information
completeness. Furthermore, revised columns harmonizing the variances
between data sources were generated in the database for building class,
construction year, renovation year, area, and the number of floors, which
will later be used as predictive variables. The purpose of creating building
classes is to cluster the buildings with a similar function and typology.
According to the renovation or demolition permit description, the primary
usage of the building stated in the inventory data, as well as building types
and building categories from national building registers, the observations
were categorized into ten building classes: single-family house, multifamily
house, temporary building, school, office, commercial building, production
building, industrial building, warehouse, and other/infrastructure. The label
of inventory types and building classes are fundamental to stratify the data
subgroup for comparative analysis. The combination of building registers
and inventory data constituted the hazardous material dataset that was used
for data analysis and machine learning modeling.



3.2.4. Validation of the Hazardous Material Dataset

Data validation concerns data quality control and potential data
stratification for predictive data analysis. These operations were carried out
in Python’s scientific computing libraries Numpy and Pandas [106], as well
as statistical visualization libraries Matplotlib [107] and Seaborn [108]. The
first part of data validation examined the hazardous material dataset’s
quality by evaluating data uncertainty in building registers and data
completeness from inventories. The correct matching registers and less
uncertain matching registers, whose real estate index, address, and parts of
building parameters were consistent, were stratified. The data quality
control resulted in a total of 848 observations, which became the basis for
missing values and positive detection ratios computation.

Afterward, explorative data analysis was performed to understand the
underlying data structure. As most hazardous substances were banned in the
1970s, the buildings built between 1900-1990 were of interest for
descriptive analysis, which corresponds to the decades of massive use of
asbestos and PCB-containing materials in buildings. 848 observations
fulfilling the condition were visualized in terms of building parameter
distribution against the detection of hazardous substances. Firstly, the
normalized density plots and histograms of the building parameters were
created for the observed buildings to understand their representativeness to
Gothenburg and Stockholm building stocks. Then the distribution of the
construction year for the multifamily houses and school buildings between
the hazardous material dataset and Gothenburg and Stockholm building
stocks were compared using normalized density plots to gain an overview
of contaminated buildings.

In the last part of data validation, a cross-validation matrix evaluating the
data quality and quantity were set up to streamline the process. By
employing the metadata from the subgroup of each building class and
hazardous material to Formula (1), assessment scores can be calculated to
identify potential data for machine learning modeling. This evaluation has
been done at individual observation and data subgroup levels. More
specifically, the entire calculation process consists of three steps: (1)
extracting the dummy-format detection results of hazardous substances and
weighting inventory types based on level of detail. The weights from high
to low in decile points correspond to reports (» = 1.0), protocols (p = 0.75),
control plans (¢ = 0.5), and the demolition plans (d = 0.25); (2) for each
hazardous material in a given building class, the number of observations in
each inventory type was multiplied by the respective weight, then the values
were summed up and divided by the number of observations in the
subgroup; (3) a threshold (K) was introduced to evaluate the number of
missing values for each subset. Sufficient data is a prerequisite for drawing
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statistical conclusions. Therefore, if the number of observations is above
5% of the total observations in the dataset, denoted as 1; between 2,5% and
5% of the total observations, denoted as 0,5; less than 2,5% of the total
observations, marked as 0. Implementing the cross-validation matrix to
each data subgroup paired with hazardous materials and building class, the
promising targets for the prediction can be ranked out.

(Ir xnr +Ip xnp + Ic X nc + Id X nd) K
= *
n

(1)

y

y = Assessment score [0 - 100].

I = Inventory type for weighting the individual observation. / = 1,0 if is the
report (r), I = 0,75 if is the protocol (p), I = 0,5 if is the control plan (¢), and I =
0,25 if is the demolition plan (d).

n = The number of observations in the subgroup [0 < n].

N = The number of the observations in the entire dataset.

K = Number of observations enough for statistical operation. K = 1,0 if n >=
(0,05*N), K = 0,5 if (0,025*N) =< n < (0,05*N), K = 0 if n < (0,025*N).

3.3.  Machine Learning Pipeline

Based on the validated hazardous material dataset, machine learning models
were created to explore the prediction possibility of hazardous materials. The
objectives of Paper III are to develop a machine learning pipeline that can
process the data, feed them into training models, and generate prediction results
for evaluation. The structure of a machine learning pipeline is illustrated in
Figure 3.3 and described in detail in the following subsections. The entire
pipeline constituting data processing (Section 3.3.1), model development
(Section 3.3.2), and result interpretation (Section 3.3.3) was created to
investigate Research Question 3. Beyond the focus on prediction accuracy,
more feasible aspects regarding model tuning and generalization were also
explored. This could be, for instance, the number of optimal features and input
data for specific prediction and performance evaluation between classifiers.
Finally, the last part of the pipeline emphasizes insights disclosure of the black
box through generating hypotheses based on domain knowledge. The entire
work was completed with Python’s machine learning toolbox scikit-learn.
Deploying such a machine learning pipeline can scale the hazardous material
prediction in the large-scaled, yet not surveyed building stock and facilitate
preventive building material management.
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Figure 3.3 A machine learning pipeline demonstrates how data were processed
and used for model development and result interpretation.

3.3.1. Data Processing

The hazardous material dataset consists of model and complementary parts,
as shown in Table 1 in Paper III. The model part contains variables for
machine learning modeling, such as geographics, building usage, building
parameters, detection of hazardous substances and materials; while the
complementary part includes auxiliary information concerning matching
keys, permit description, building class, municipality building category and
code, and the metadata from inventories of hazardous waste. The dataset
was stratified according to building class to predict the presence of a
specific hazardous material in a particular building type. By clustering the
observations for similar building profiles can increase the chance of pattern
identification and prevent false inference of the prediction results. The
building classes with high cross-validation scores, including multifamily
houses and school buildings, became the prediction targets. Then the model
part was further split into 60% of training, 20% of testing, and 20% of
validation subsets. This proportion for dataset partitioning was chosen for
small datasets by convention. The training and the testing subsets were
intended for model training and hyperparameter tuning, while the validation
subset was held out for model deployment. Hyperparameter tuning allows
optimizing models’ performance by choosing an optimal set of parameter
values for the learning algorithm [81]. Therefore, only the training and the
testing subsets underwent data processing procedure, which incorporates
necessary preparation before machine learning modeling, namely, data
cleaning, transformation, and feature engineering.
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The data transformation process started with data cleaning, where
missing data and outliers were removed or replaced with mean values. This
was followed by performing data transformation to optimize the
performance of scale-invariant classifiers, where categorical variables were
encoded to dummy variables and the numerical variables were standardized
to a comparable scale [81]. Then the potential correlation between the target
and predictive variables was studied using correlation plots and stepwise
logistic regression. Independent variables with a high coefficient and a low
p-value, which is the calculated probability that describes the likelihood of
the data occurring by random chance, were selected as the initial set of
potential features [109]. Then they were computed with two feature
engineering techniques to identify the most relevant variables before
modeling. The Recursive Feature Elimination (RFE) technique removed
variables iteratively and determined the optimal number of features [110].
The results were further verified with tree-based estimators and the key
features identified by RFE and Extra Trees ensemble were employed as
predictive variables for model development.

3.3.2. Model Development

Several classifiers were chosen for model training considering their
strengths and weaknesses for predicting on the small dataset: logistic
regression, kernel support vector machines (SVM), k-nearest neighbors (k-
NN), random forest, extreme gradient boosting (XGBoost), and CatBoost.
An overview of the chosen non-parametric algorithms that can adapt to
increasing parameters is described in Table 2 in Paper III. Introducing
different algorithms can diagnose bias and variance trade-offs and adjust
the model parameters accordingly [81].

The logistic regression classifiers that estimate the probability of class
distribution were used as a base model to compare with the prediction
performance of other algorithms. The kernel SVM classifiers, on the other
hand, are high variant distant-based algorithms that linearly separate data
by maximizing the data gaps on the projected hyperplane. The k-NN
classifiers are instance-based algorithms that incrementally learn from data
and predict the classes based on the majority vote. The random forest
overcomes the drawback of overfitting tendency in decision trees and can
be trained without specifying and standardizing parameters. The XGBoost
with gradient-boosting allows optimization of loss function by merging
weak learners with strong learners for the next prediction. The addictive
models do not require model regularization and can process missing data
efficiently; however, they cannot handle categorical features and need a
long training time. With respect to the drawbacks, the CatBoost classifiers



were developed to process the categorical features parallelly while
preventing target leakage using ordered boosting [111].

As the class imbalance between positive and negative detections was
noticed during the explorative data analysis; thus, the data number of the
minority class was upsampled to match the majority class for cost-sensitive
learning, which implies the use of a cost matrix to calculate the total cost of
misclassification by weighting the sum of the false negatives and false
positives. After model training, their generalization performance was
evaluated with the testing subset. The nested cross-validation, illustrated in
Appendix A of Paper IIl, was used to obtain initial accuracy for model
selection. Furthermore, the classification results were evaluated with
various performance evaluation metrics, illustrated in Appendix B of Paper
III. The accuracy and the recall rates in the confusion matrix were used to
assess the models’ performance. The accuracy entails the ratio of correctly
predicted observations to the total number of observations, whereas recall
(or sensitivity) implies the ratio of correctly predicted positive to all
observations in actual class [81]. The Receiver Operating Characteristic
(ROC) curves were schemed as a secondary performance metric, where
varied discrimination thresholds evaluate the trade-off between sensitivity
and specificity, namely, the true positive rate against the true negative rate
[81]. Besides, the effect of data size on prediction accuracy was investigated
by increasing the amount of training data. Plotting the learning curves
enables measuring the bias-variance trade-off ascertaining the minimum
amount of required data. In the end, the refined models were verified on the
validation subset for unbiased evaluation before model deployment.

3.3.3. Result Interpretation

Despite promising prediction performance, the results from machine
learning models are sometimes hard to understand by human experts.
Accuracy can vary slightly in each training iteration due to the randomness
nature of stochastic learning algorithms. Therefore, different visualization
applications were developed to increase model transparency and enhance
interpretability [75]. SHapley Additive exPlanations (SHAP) was a
universal framework to explain the structure patterns determining the
predicted probability [112]. Afterward, domain experts were involved in
appraising whether the recognized feature importance was reasonable and
coherent to the scientific hypotheses. Through the implementation of the
hybrid approach, the underlying decision mechanism of algorithms can be
comprehended.
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4. Results

The chapter summarizes the main findings from the papers in the thesis work. It is
structured into three sections corresponding to the research questions. The outcome
from the systematic literature review presented in Paper I forms the background for
Paper II and Paper III (Section 4.1). Paper II explains how a hazardous material
dataset and the associated databases were created (Section 4.2). Validating the
matched data in terms of their quality and quantify lays a foundation for the
subsequent machine learning modeling. In Paper 111, the prediction cases adopting
the proposed machine learning pipeline were demonstrated (Section 4.3).

4.1.  Emergent Applications for Hazardous Material
Management

Paper 1 provided an overview of the existing data-driven applications for
hazardous material management and highlighted the research gaps. In the first
part of the literature review and science mapping, the scattered nature of the
research domain was recognized in terms of their thematic distribution, and 70%
of the articles were published between 2005-2020, with a peak in 2018. The
major topics identified in the literature can be categorized into (1) big data, data
mining, and machine learning applied in the construction sector, (2)
construction and demolition waste management under the circular economy
umbrella concept, (3) evaluation or remediation of the exposure risk to
hazardous substances.

From a research development perspective, these topics are rarely addressed
together but studied from mainly three disciplines individually — the
environmental sciences and ecology, the public environmental and occupational
health, and engineering. Compared to the high number of chemical-oriented
references, the hazardous materials studies published in building-related
journals are relatively few and accounted for only 4% of the thematic
distribution among the acquired literature, presented in Figure 2 of Paper L. In
particular, the distinct disconnection of hazardous material management
between the use and end-of-life phases in the building lifecycle is observed. In
situ hazardous material management concerns mainly concentration or emission
monitoring [113]-[115], mitigation and remediation measures [96], [116],
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while hazardous waste was addressed from risk management [27], [48], and
source detection perspectives [117]. However, very few references concern the
concept of semi-selective demolition to prevent hazardous materials from
entering the waste stream and the awareness of material pollution caused by
secondary contaminants. The integration between chemical and environmental
engineering, and construction and building technology remains to be further
developed to enable the newly-form circular economy value chain in the
construction sector.

Analysis of the research front and domain evolution indicated the varied
extent of research intensities between substances. According to the results of
the co-word analysis, a multiple correspondence analysis measuring the
similarity and variance between the Keyword Plus, the literature on asbestos
and PCB-containing materials dominates the field. The identified frequent
terminologies fall under two separate clusters — the diseases, risk groups, and
measurement methods associated with asbestos, as well as the source materials
and contamination of PCB in buildings. These results are in line with the
findings from the word dynamic analysis. The accumulated keywords of
“exposure” and “buildings” exceeded the safety and medicine-related terms in
2012 and gradually became the field’s research focus.

Accordingly, the shift of the research paradigm is recognized in the historical
direct citation network. Several bans and restrictions of asbestos worldwide
came into force during the 1970s [118], the period when the research on
asbestos concentration and abatement was initiated [119]-[121]. The second
wave of asbestos research contains studies from 1995-2016 on the causality
between the deadly diseases, i.e., lung cancers, mesothelioma, mortality, and
asbestos exposure [122]-[125]. The awareness of the correlation between
pollution and health was risen after that [126], [127]. To quantify the effects of
asbestos-containing materials, new identification methods built upon remote
sensing were developed and tested on a regional scale [56], [74], [128]. In
comparison to the early research on asbestos, the studies on PCB began in 2002,
and several published studies investigated PCB sources and emissions in
schools, and residential buildings arose ever since [27], [115], [136], [137],
[117], [129]-[135]. The relation between influential authors, keywords, and
publication journals was visualized in a three-field plot (or Sankey diagram) in
Figure 6 in Paper I to summarize the research magnitude.

However, a common objective is overlapping in terms of quantifying the
exposure risk of hazardous materials in the built environment. Novel
approaches and tools were explored to facilitate hazardous material
management in correspondence to the local legal requirements. The various
granularity of building classes and measurement scales, as well as a wide
assortment of hazardous material in the highly relevant literature, show high
empirical potential. However, their practical application to circular construction
and possible synergies between different approaches remain unexplored.



Therefore, an attempt to match the content review according to the EU
Construction and Demolition Waste Management Protocol [20] was made in
Figure 7 in Paper 1. Highly relevant literature involving all search terms was
evaluated based on the first part of the protocol. More specifically, the
concerned articles’ research objectives, data specification, and analytic
techniques were illustrated into three quantitative purposes: hazardous material
identification, separation, and collection, shown in Table 4.1.

Table 4.1 An overview of data-driven applications to hazardous material
identification, separation, and collection.

Applications Techniques* References

Identification - Remote sensing
. CNN, RF, Naive Bayes, SVM, [58], [60],
Identify asbestos-cement roofing Kk-NN, LDFA/QDF [Z Boruta %1323][ [ 1]39]

Identification - Building investigation

Identify the presence of asbestos materials Cohen’s kappa statistics [451-[47]
Assess the amount and costs of asbestos materials ~ Person correlation [32]
Predict the presence of asbestos materials Ontology / probability [61]
Separation - Hyperspectral imaging

Detect asbestos materials PCA, PLS-DA, SIMCA [62], [63]

Collection - Image processing
CNN, SVM, MLP, PCA, RF,

Optical sorting CDW materials or minerals SVM, Decision Tree, Naive [64]-[68]
Bayes

* Abbreviation of classifiers for different learning problems.

e  Statistics: Partial Least-Square-Discriminant Analysis (PLS-DA); Soft Independent
Modeling of Class Analogies (SIMCA)

e Feature engineering: linear/quadratic discriminant function analysis (LDFA/QDFA),
Boruta

e  Supervised learning algorithms: random forest (RF), support vector machine (SVM), k-
nearest neighbor (k-NN), Naive Bayes, Decision Tree
Unsupervised learning algorithms: principal component analysis (PCA)

e Deep learning algorithms: convolutional neural networks (CNNs), multilayer
perceptron (MLP)

Approaches for in situ hazardous material identification were found at both
material stock and building levels. Mapping asbestos-containing cement roofing
on a regional or national scale was achieved through combining remote sensing,
field registers, and machine learning techniques [58], [60], yet it can only
estimate a single, visible type of asbestos-containing material. Other approaches
at the building level made use of building surveys [45], [47], demolition
databases and pre-demolition inspection reports [32], and asbestos diagnosis
and product descriptions [61]. However, as stated before in the former research,
these studies have not adopted machine learning techniques for prediction.
Nevertheless, the progress of probability estimation underpinned by statistics
and ontology-based studies and results can be used to benchmark the positive
detection rates in Paper II and verify the prediction results and influential
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features in Paper III. Moreover, the hybrid method of integrating optical
asbestos images and machine learning techniques for waste separation [62], [63]
and collection were proved successful in previous research [64]-[68]. Various
supervised, unsupervised, and deep learning classifiers show promising results
for hazardous materials prediction and detection. Nevertheless, these pilot
projects remain nascent and lag a broad uptake in the CDW management
industry. This provides room for exploring the information from hazardous
waste inventories and leveraging it as data to predict the potential presence of
hazardous materials in the building stock.

4.2. Hazardous waste inventories as a Basis for
Data-driven Analyses

To tackle the unaddressed research gaps, Paper II and the appended conference
paper present a case study on extracting information on the presence of
hazardous materials and components from hazardous waste inventories from
renovated and demolition buildings in the city of Gothenburg. Later the data
collection work extended to also include inventories from buildings in the city
of Stockholm to increase the data size. The focus of the efforts was put into the
data mining tasks to handle the unstructured building-specific data and
underdeveloped register management. First and foremost, creating the database
of hazardous waste inventories and the hazardous material dataset is a pilot task.
The findings show that unstandardized inventory document types, varied
experience levels of auditors, and investigation scopes challenge the
development of a harmonized dataset structure. The different detail levels of
inventories and their data reliability were described in Section 3.2.1. Hence, the
primary data structure was adopted from the municipal hazardous waste
inventory protocol [140] and then slightly modified based on the hazardous
material list published by the Swedish Circulation Council in Construction
(Byggsektorns Kretsloppsradet) [141]. Additional attributes regarding the
auditing year and building parts, coverage of hazardous materials, as well as
building decontamination history were included in the dataset as extra
parameters for quality leveling of the observed buildings.

Screening the hazardous waste inventories in Gothenburg and Stockholm
cities resulted in 906 observations. After excluding ineligible buildings or
buildings with a lack of information about building class or construction year,
848 observations remained, of which 85.0% of the observations came from
reliable and complete data sources such as reports or protocols. Both inventory
types investigated a wide range of hazardous materials with fewer missing
values than was the case in control plans or demolition plans. To understand
which building classes contain quality inventory data, the inventory types are



aggregated into a countplot in Figure 4.1. The results show that inventory data
from reports are available for school buildings, multifamily houses, commercial
buildings, and production buildings. On the contrary, control plans are primarily
for single-family houses, and the building classes with inventories documented
in protocols and demolition plans are relatively evenly distributed.
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Figure 4.1 Clustering the inventory types across building classes with a
counplot.

Positive detection rates and available data subgroups were visualized based
on hazardous materials in Figure 4.2 for the entire dataset to highlight the
potential materials for analysis and modeling. Positive detection rates are the
aggregation results of the number of positive observations over the total number
of valid observations, indicating contamination likelihood. The available data
amounts represented as bar charts underpin the validity of the calculated
positive detection rates, represented as line charts. Asbestos-containing
materials with high number of detection records and positive detection rates
were reported as the following: pipe insulation (» = 0,62), door or windows
insulation (» = 0,56), floor mat (» = 0,48), cement panels (» = 0,54), and joints
(r=0,45). Other asbestos materials with adequate data are tile or clinkers, carpet
glue, and ventilation channels. In comparison, sufficient data are obtained for
PCB-containing joints or sealants, sealed double glazing windows, capacitors
in lamps or burners, and acrylic flooring, of which capacitors are reported with
a high positive detection rate (» = 0,52). CFC-containing fridge or freezer and
mercury-containing lighting tubes are also found to have a sufficient data
amount and are detected frequently.
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Figure 4.2 The combined bar charts and line charts show the available data
amount and positive detection rates of specific hazardous materials. The
illustrations from top to bottom describe the asbestos, PCB, CFC, and mercury-
containing materials for the entire dataset.

Table 3 in Paper II showed that reports and protocols contain substantial
detection information of hazardous materials, whereas control plans and
demolition plans only have limited records on hazardous substances. Besides,
the positive detection rates vary significantly between inventory types and
hazardous materials when taking the sufficient data size into account (N > 5%
of the total number of observations). Reports generally have the highest
detection rates than the other inventory types, while control plans have the
lowest rates. The frequently detected hazardous substances are mercury,
asbestos, CFC, and PCB, listed in descending order. When it comes to materials
and components, asbestos cement panels and asbestos pipe insulation have high
detection rates in both reports and protocols. PCB-containing capacitors and
sealants, CFC-containing fridges or freezers, and mercury-containing light
tubes show similar tendencies. The variance of detection rates is assumed
relating to the constitution of building classes of the observations for each
inventory type. Data stratification for equivalent building types and the
construction period is needed in the later work to obtain robust detection results.

Furthermore, the building parameters of the observed buildings were assessed
to determine the possibility of using the detection results from the inventories
of hazardous waste to represent their potential presence in the Gothenburg and
the Stockholm building stocks. As the hazardous material dataset contains
renovated and demolished buildings from the latest decade, the building class
composition differs from the Gothenburg and the Stockholm building stock.
The number of low height, small-area complementary buildings, and summer
houses in the hazardous material dataset are overrepresented, whereas
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multifamily houses are less representative. Also, complex properties with
several buildings or buildings primarily operating a contamination-like business
are enforced for environmental investigation. These kinds of buildings can, for
example, be schools, industrial and production buildings. Since the aggregation
level in the hazardous material dataset is individual building, they are prone to
overrepresent the building stock. Considering these factors, the potential
building classes from both datasets were selected for descriptive analysis.

To ensure correct inference of the results from the pre-demolition audit
sampling, the value distributions of construction year were compared between
the inventory data and the Gothenburg and Stockholm building registers for
multifamily houses and school buildings. The results were compiled and
presented as normalized density plots in Figure 4.3. The kernel density
estimates show a relatively parallel distribution for school buildings. Yet, a
tendency of oversampling the buildings built between 1950 and 1980 were
observed both for multifamily houses and school buildings. The actual density
estimates for the multifamily housing stock in Gothenburg and Stockholm are
mainly spreading between 1920 to 1980, while the school building stock shows

high-density distributions in the 1910s and the period of 1940-1980.
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Figure 4.3 The normalized density plots are created for descriptive analysis
between the hazardous material dataset and the Gothenburg and Stockholm
dataset. The illustrations describe the construction year distribution in
multifamily houses, including mixed-use offices and commercial spaces on the
left (NI =147, NBR =21268) and school buildings on the right (NI = 152, NBR

= 1859).

Overall, several interlinked factors challenge the use of building-specific
information from hazardous waste inventories, especially data incompleteness,
insufficient data amount, and heterogeneous building classes. The proposed
cross-validation matrix considers these factors and pinpoints the potential
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prediction of hazardous materials in particular building classes. Table 4.2 shows
an overview of the calculated cross-validation scores based on Formula (1) and
underlines the data subgroups whose cross-validation scores are over 90. The
counted number of the high scores were described on the building class and
material basis to offer an overarching picture of which data subgroups should
be prioritized for machine learning modeling. Then the results were summarized
into a score ranking presented in Table 3 in Paper I1I. According to the metadata
of the assessment score, promising building classes are schools, commercial
buildings, industrial buildings, multifamily houses, offices, and production
buildings. The high-scoring hazardous materials aligned with the frequently
investigated hazardous material list in protocols and reports. Specifically, the
high potential asbestos-containing materials are pipe insulation (N= 4), door or
windows insulation (N= 3), tile or clinker (N= 3), carpet glue (N= 3), floor mat
(N= 3), ventilation channels (N= 3), and cement panels (N= 2), while PCB-
containing materials are joints or sealants (N= 3), sealed double glazing
windows (N= 3), capacitors (N= 1), acrylic flooring (N= 1). In short, both
asbestos-containing pipe insulation in multifamily houses and PCB-containing
joints or sealants in school buildings were found with sufficient data granularity
and quantity, which made them became the prediction targets to further
investigate the feasibility of using machine learning to estimate the presence of
hazardous materials.

Table 4.2 The overview of the assessment scores for each building class is
based on data quality and data size (N= 848, numbers in bold are the scores
higher than 90).

Hazardous Building Class

Material C1 C2 C3 C4 C5 Co C7 C8 C9 Ci10 N
Asbestos 63 90 80 95 97 91 9 89 41 94 6
Pipe insulation 74 92 42 95 50 95 95 48 0 49 4
Valves 38 46 0 92 0 0 0 0 0 0 1
Doorinsulation 38 94 41 95 50 96 48 48 0 50 3
Cement panel 36 93 40 94 50 44 4 0 0 0 2
Tile/clinker 76 94 40 96 50 96 46 46 O 50 3
Carpet glue 39 93 40 96 50 93 47 48 0 48 3
Floor mat 44 95 0 98 50 96 48 50 0 49 3
Ventilation channel 0 926 0 98 49 95 50 50 0 50 3
Switchboard 0 0 NA 50 0 0 0 0 0 0 0
Joint 0 99 0 95 50 48 48 0 0 0 2
Others 0 96 0 50 50 48 0 0 0 0 1
PCB 66 89 80 93 9% 93 9 46 44 95 5
Joint/sealant 76 91 41 92 48 94 45 47 0 0 3
Sealed window 76 91 40 94 48 95 46 48 0 50 3
Capacitors 75 41 41 94 0 46 44 45 0 0 1
Acrylic floor 73 87 38 94 0 46 44 48 0 0 1
Door closer 0 0 0 46 0 0 0 0 0 0 0
Cable with oil 0 0 0 46 NA 0 0 0 0 0 0



Others 0 0 0 0 0 0 0 0 0 0 0
CFC 62 89 36 93 98 92 91 46 42 46 4
Fridge/freezer 68 91 39 94 0 44 45 46 O 0 2
Insulation 70 41 38 93 0 46 43 0 0 0 1
Cooling unit 36 43 38 94 50 48 46 47 0 0 1
Rolling gate 0 0 0 0 0 0 0 0 0 0 0
Others 0 0 0 0 0 0 NA 0 0 0 0
Mercury 62 91 79 96 9 91 91 89 41 91 6
Lighting tube 68 91 84 95 9% 93 91 45 42 92 6
Relay/switch 35 40 38 92 0 0 4 0 0 0 1
Level monitor 38 41 38 94 0 0 45 0 0 0 1
Thermometer 38 44 38 94 0 0 44 0 0 0 1
Thermostat 37 0 38 92 0 0 43 0 0 0 1
Water lock 36 0 38 94 0 0 0 0 0 0 1
Lamp 0 48 0 97 50 50 0 0 0 0 1
Doorbell 0 0 NA O NA 0 0 NA 0 NA O
Others 0 0 0 48 0 0 0 0 0 0 0
N 0 15 0 27 5 13 6 0 0 4

* The representation of the building class: C1 (Single-family houses, N=116), C2 (Multifamily houses,

N=

153), C3 (Temporary dwellings, N=56), C4 (Schools, N=154), C5 (Offices, N=72), C6

(Commercial buildings, N=85), C7 (Production buildings, N=75), C8 (Industrial buildings, N=44), C9
(Warehouse, N=31), C10 (Others/Infrastructure, N=60).
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4.3. Risk Assessment Using Machine Learning
Methods

Paper 111 is a successive study of Paper II that features applied machine learning
model development. A machine learning pipeline to perform the hazardous
materials prediction tasks was developed and tested with two promising
hypotheses from the cross-validation matrix. To explore the underlying data
patterns, the following tasks were defined to determine (1) prediction accuracy
between classifiers, (2) the minimum number of observations for reliable
prediction results, (3) influential features for specific prediction models. The
acquired results are intended to evaluate the possibility of adopting a new
approach for risk assessment of the remaining hazardous materials in buildings.
More concretely speaking, the influential features associated with the specific
hazardous material’s detection in particular building classes, along with the
machine learning algorithms that have the optimal performance, were intended
to be identified.

Previous literature indicated prevalent hazardous materials exposure in
residential [32], [45], and school [115] buildings and quantified with high
detection rates. The normalized stacked density distributions for asbestos-
containing material detections in multifamily houses in Figure 4.4 and the PCB-
containing material detections in school buildings in Figure 4.5 are presented.



In the binary classification, 0 entails negative detection, and 1 represents
positive. The figures showed that the positive detection likelihood dropped in
both cases when the asbestos and the PCB were banned in the 1970s. For
asbestos-containing materials in multifamily houses, the density distribution
patterns of pipe insulation, valves, and door and windows insulation were alike.
On the other hand, the positive detection likelihoods of PCB-containing
materials in school buildings were lower, and no particularly noticeable patterns
were identified between materials.
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Figure 4.4 The normalized stacked density distribution shows the likelihoods
of positive detection for asbestos-containing materials in multifamily houses.
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Figure 4.5 The normalized stacked density distribution shows the likelihoods
of positive detection for PCB-containing materials in school buildings.

In the subsequent feature selection, the Recursive Feature Elimination (RFE)
algorithm and the Extremely Randomized Trees Classifier (Extra Trees) were
used to identify preferable features and the number of features. The findings
from cross-validation accuracies showed that the optimal numbers of features
for predicting asbestos-containing pipe insulation and PCB-containing joints or
sealants were seven and four, respectively, illustrated in Figure 4 in Paper II1.
The chosen variables from RFE were inserted into the Extra Tree classifier for
feature importance ranking, visualized in Figure 5 in Paper III. Construction
year, floor area, renovation year, and the number of stairwells and floors are
the key features for asbestos pipe insulation prediction in multifamily houses,
whereas floor area, construction year, balanced ventilation, and renovation year
are crucial for PCB joints or sealants prediction in school buildings.

By employing the input features to the machine learning pipeline, the
prediction performance of the selected classifiers were evaluated. The results of
the confusion matrix are summarized in Table 5 in Paper III and show that 74%
of the average accuracy for asbestos pipe insulation prediction was obtained,
whereas the average accuracy for PCB joints or sealants prediction reached
83%. In addition to accuracy and recall, Table 4.3 presents additional
performance evaluation measures of the cross-validation F1 score and the area
under the ROC curve (AUC) for model selection. F1 score considers the
precision-recall tradeoff by weighting their average values. A F1 value close to



1 entails a high harmonized mean of precision and recall rates. On the other
hand, AUC measures how well the model separates the classes and is usually
used for evaluating class balanced classification.

Table 4.3 The cross-validation accuracies between classifiers are presented for
the predictions of asbestos pipe insulation and PCB joints or sealants.

A§bestos.p 'pe PCB joints or sealants
insulation

F1 score* AUC** F1 score AUC

Logistic regression 0,55 0,62 0,67 0,86
Kernel SVM 0,50 0,79 0,66 0,83
k-NN 0,73 0,82 0,81 0,78
Random forest 0,89 0,92 0,95 1,00
XGBoost 0,89 0,88 0,90 1,00
CatBoost 0,84 0,96 0,95 1,00
Average 0,73 0,83 0,82 0.92
Average (tree-ensembled) 0,87 0,92 0,93 1,00

*F1 score=2 (REC * PRE/(REC +PRE))
**AUC = TPR / FPR

The tree-ensembled classifiers, including the random forest, XGBoost, and
CatBoost classifiers, had notably better performance than other models in both
prediction cases. In general, cost-sensitive learning that handles the class
imbalanced classification performed well on the resampled dataset. The
findings also showed that the random forest and the XGBoost classifiers
performed the best among all classifiers in predicting asbestos pipe insulation
with F1 scores 0,89, while the random forest and the XGBoost classifiers
obtained optimal F1 scores 0,95 in predicting PCB joints or sealants in school
buildings. To verify the prediction results, the ROC curves were plotted to
illustrate the true positive rate against the false positive rate at various threshold
settings. The average AUC of the asbestos pipe insulation prediction ranged
from 0,83-0,92, while the average AUC of the PCB joints or sealants prediction
was obtained between 0,92-1,00.

After that, learning curves were schemed to diagnose the bias and variance
problems by plotting the accuracy rates along with the increasing number of
training data, presented in Figure 7 in Paper IIl. The findings showed that
satisfactory prediction results could be obtained with 100 training datapoints
for asbestos pipe insulation prediction and a minimum of 50 training datapoints
for PCB joints or sealants prediction. With increasing data, the gaps between
training accuracy and validation accuracy decreased and gradually reached a
balance bias-variance trade-off. However, the tree-ensembled classifiers had a
tendency of overfitting; collecting more training data or increasing the degree
of regularization can address the issue.
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Lastly, contributing features and their importance to the model outputs were
summarized using SHAP values, presented in Figure 8 and Appendix C in Paper
III. For predicting asbestos pipe insulation in multifamily houses, the primary
features identified by XGBoost and Catboost classifiers were construction year
and floor area. Other influential features were, for example, renovation year, the
number of stairwells, and apartments. Interpreting from the feature values, the
multifamily houses built close to the 1960s-1980s with a large floor area are
more likely to have asbestos-contaminated pipe insulation. On the other hand,
the most crucial features for PCB joints or sealants prediction in school
buildings were construction year, balanced ventilation, and floor area.
Combining the feature values from both XGBoost and CatBoost models, it
became apparent that school buildings built in the later era with a balanced
ventilation system, large floor area, and no installed balanced ventilation system
with heat exchanger are more likely to have PCB-contaminated joints or
sealants.



5. Discussions

In this chapter, critical aspects of the hazardous material dataset creation and the
development of a machine learning pipeline are discussed. The limitations of the
data have been briefly addressed in Paper II and Paper IIl. Building upon that, a
more comprehensive discussion about data interoperability and representativeness
related to building-specific information enrichment will be presented and discussed
(Section 5.1). The next part (Section 5.2) concerns the result implication of the
prediction outcomes and the possibility of scaling the method to the building stock
in other regions or nations. Finally, the viability of developing a digital pre-
demolition protocol and its benefits are discussed.

5.1. Limitations of the Data

The robustness of the prediction results and performance of the machine
learning models to predict the presence of hazardous materials in the not yet
investigated building stock are highly dependent on input data. Therefore, the
certainty and the characteristics of the training data are critical factors that must
be assured. By delineating the data usefulness boundary, the hypothesis for the
predefined prediction scope can be formulated and verified accordingly. The
section discusses the data quality (Section 5.1.1) and data interoperability
(Section 5.1.2) between generic building information and building-specific
information, as well as the data representativeness of the compiled hazardous
material dataset (Section 5.1.3).

5.1.1. Data Quality

One should be aware of the risk of mining data from hazardous materials
inventories from demolished or renovated buildings. Firstly, incomplete
inventories and missing values can cause misinterpretation in data
transformation. It is unclear whether the suspected building materials are
nonexistent or not investigated when it comes to protocols, control plans,
and demolition plans. These uncertainties are derived from fragmentary
building documents in the desk study, inaccessibility to the building
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components, and non-systemized documentation of the investigation [32].
The “gray zone” of the auditing boundary has not been explicit, and
“presumable terms” of the ambiguous investigation results lead to
confusion between missing data and negative detection.

Next, the assessment scope may not represent the entire buildings as
hazardous waste inventories for renovation often concerns simply the
reconstructed or modified parts. Thus, using the partial detection results for
model training may exclude other potential building materials and cause
bias. Also, various experience levels of auditors and their inspection process
can cause uncertainty of the inventory results. Sampling analysis in reports
is performed by qualified consultants or environmental experts for
complicated buildings; however, the investigation extent and quality of the
inventories without conducting sampling may need to be further clarified.
Wabhlstrom et al. [2] pointed out that the current hazardous waste inventories
focus on identifying in situ hazardous materials, and the mapping of the
wastes is not fully implemented or estimated accurately. In order to reuse
and recycle material-specific fractions, it will require establishing the
backward information loops of hazardous waste to audit the actual
identified amount and types of materials after the demolition.

Finally, various update paces between registers were noticed in data
matching. Multiple construction years, renovation years, and floor areas
registers from different sources hinder the exact matching between
registered and inventory data. Accordingly, the GIS map of building
footprint and height was introduced to enable reference value selection for
floor area and number of floors variables. All available versions of EPC
data and their approval dates were also used to assure correct data retrieval.
Accounting for all these biases in data, a universal model that can be used
to replace hazardous waste inventories will never be possible to be
developed. Just as no models ever have a complete account of reality.
However, the target of this research is to provide predictions that can guide
pre-demolition audit investigations and assist decision-making for potential
risk assessments.

5.1.2. Data Interoperability

Data interoperability relates to coupling the national building register
database and the database of hazardous waste inventories. The bottom-up
approach of adding building-specific information, such as socio-economic
information [58], [73], spatial information [31], [57], [60], and building
measurements [6], [90], to enrich the building database has been explored
by former research. Several barriers were reported in integrating the
distributed and heterogeneous field data with the standardized registered



data, above all, resource-demanding extraction and transformation of non-
digitalized data [31], as well as time-consuming processing of non-
standardized data [8]. Consequently, the data-enrichment process is manual
and requires constant quality control from domain experts to assure correct
building observations and documentation interpretation [6]. Similar
problems were reported when collecting and exploiting demolition-related
information [52], which has been experienced in this study. The
incompatible interface between hazardous waste inventories and building
registers challenges the integrity and consistency of the building
information. It is, therefore, hard to determine which buildings have been
investigated due to the lack of building keys corresponding to the building
registers. Aside from that, the correctness of building information from
inventories is hard to evaluate when they conflict with building registers.

Other risks include matching records from inventories and building
registers for creating the hazardous material database, as well as merging
multiple building register sources for establishing the national building
register database. Matching data requires many relationships between
datasets, yet missing information in both building registers and pre-
demolition inventories entails the uncertain matching results that may cause
by wrong data retrieval. To address the issue, a matching code was created
to examine the matching certainty for the joined dataset in the case the
observed buildings were modified or deconstructed. The matched data with
a one-to-one relationship accounts for 69% of the hazardous material
dataset (N=848) after removing the observations that lack building classes
or construction year. Nevertheless, circa 12.7% of the observations from
complex properties can hardly be distinguished, or the lack of complete
information from either registers or inventory data (1.3%). Another 7.1%
belong to specific matching at the property level, yet uncertain at building
level because of nearly identical building parameters. On top of that, the
information in the registers may be eliminated after buildings are
demolished (4.2%) or renewed to reconstructed buildings (0.5%). As the
extent of building information in the inventories varies, part of building
parameters may be unmatched (2.7%) or have one available register
information for several inventoried buildings on the same property (1.9%).
It also happens in the opposite way that an aggregated inventory represents
more buildings on the same property (0.6%).

Moreover, various aggregation levels were used in different registers,
which makes the extensive data merging challenging. For example, value
unit is used in the real estate taxation register, building unit in the
municipality cadastral register, EPC index (Formular ID, a mix of property
and building level) in the EPC data. To deal with the many-to-many
relationship, additional attributes, such as the total number of matching
relationships, the number of value units for a property, and the number of
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properties for a value unit, were created to control the merging uncertainty
and duplicates. In short, the data matching and merging process could be
automated if the register records are connected with the identical units,
maintained consistently, and made accessible for pre-demolition audit desk
study and documentation if needed. It would also be advantageous if the
documentation from the hazardous waste inventories were standardized,
digitally stored, and available in a national database.

5.1.3. Data Representativeness

Data representativeness, which is a prerequisite to scale up the prediction
results and developed models based on the hazardous material dataset, is
another critical issue. The risk of data bias was highlighted from the
previous studies regarding building sampling methods and details of
inspection [32], [45]. For instance, Govorko et al. [45] analyzed self-
assessment detection reports from the developed mobile application, and
Franzblau et al. [32] evaluated the contamination risk in abandoned
residential dwellings from a municipality’s online demolition database and
their pre-demolition inspection reports. Due to various investigation details
in each type of inventory, the detection rates for specific hazardous
materials in prevalent building classes in reports and protocols have been
seen to be overrepresentative, while those in control plans and demolition
plans were underrepresented. Consequently, the question is whether the
detection rates of hazardous materials from the observed buildings can
represent their potential occurrence frequency in the entire building stock.
The self-sampling bias also applies to the work since the data were from
renovated or demolished buildings. Possible reasons for deconstruction,
such as decontamination or poor building conditions, cannot be excluded,
which might not be the case for the rest of the building stock.

The size of the dataset should also be considered, given the risk of result
amplification from small datasets. Therefore, assuring correct interpretation
of the inventories and attaining a high degree of matching with the building
registers becomes extremely important when data points are few. To judge
whether the data size is sufficient for drawing analytical conclusions, one
can refer to the previous works investigating asbestos in residential
buildings. Franzblau et al. [32] estimated the amount, type, and
decontamination cost of asbestos materials in 605 observations, while
Govorko et al. [45] analyzed the occurrence frequency and conditions of
asbestos materials in 702 observations. In the prediction with supervised
learning classifiers, von Platten [6] used the logistic regression and the SVM
algorithms for building class and characteristics prediction with 512
observations, and Cha et al. [54] employed the random forest algorithm for



demolition waste generation prediction from 784 hybrid residential and
commercial buildings. The hazardous material dataset with 848
observations seems comparable to former studies, yet compiling detection
records from several building classes requires further stratification and
resampling. Clustering the building class for specific hazardous materials
resulted in small class balanced data subsets with around 100-200
observations. Although high accuracies were obtained, tree-ensembled
classifiers tended to be overfitting and required more training data to reach
results with a balanced bias-variance tradeoft.

To assure representation of the prediction results, the building parameters
of observed buildings were compared with the Gothenburg and Stockholm
building stocks built in the same period. This criterion for dataset size was
to have the distribution of training and testing subsets resemble the
validation subset for a good model generalization performance. Comparing
the building stock as a whole, the results from Paper Il showed that a
majority of the demolished and renovated projects had extremely low or
high values of floor area from complementary facilities and building
complexes. The renovation frequency of school buildings was higher than
other buildings, making these building classes overrepresented compared to
the high proportion of multifamily houses in Gothenburg and Stockholm.
To prevent drawing an incorrect conclusion from a skewed dataset, the data
representativeness should be controlled at the building class level to
compare building properties from the corresponding data subgroups. As
such, the age of the multifamily houses and school buildings from the
dataset based on inventories and the building registers were compared and
showed a tendency of oversampling for buildings built during a certain
period. The discrepancies entail that the multifamily houses and the school
buildings constructed between the 1960s and 1970s are overrepresented in
the hazardous material dataset. Therefore, one should consider the possible
data bais when extrapolating and interpreting the analysis or prediction
results for the citywide multifamily and school building stocks.

Despite overrepresentation in the hazardous material dataset, multifamily
houses and school buildings are still considered suitable building classes for
machine learning prediction as they have distinct building characteristics
within the same data subgroup. Not only because several asbestos and PCB
materials in these building classes attained high scores in the cross-
validation matrix, but also that many multifamily houses and school
buildings in Sweden were built during the Million Homes program [142],
meaning that they tend to be standardized in terms of building
characteristics, choice of materials, indoor environment operation, and
control systems [6]. The prediction results from the machine learning
modeling confirmed the hypothesis and proved the possibility to identify
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the underlying patterns for particular hazardous materials in these two
building classes. More details are described in the subsequent section.

5.2.  Discussion and Result Implications

This section discusses implications of the results related to earlier works by first
assessing the analytical outcomes (Section 5.2.1) and complementing the
physical interpretation at the building level (Section 5.2.2). Then the upscaling
opportunities and challenges for the proposed method and its replicability in
Sweden and other countries are evaluated (Section 5.2.3). Further on, the
applications of the method and its benefits to stakeholders are discussed
(Section 5.2.3). A bold proposal is suggested to develop a harmonized digital
protocol for hazardous waste inventories to facilitate data-driven hazardous
materials management.

5.2.1. Assessment of the Analytical Outcomes

The study characterizes the presence of asbestos, PCB, CFC, and mercury-
containing materials in the Gothenburg and Stockholm renovated or
demolished building stock. The diversity of hazardous materials in the
extensive building classes has not been investigated in previous research.
Not until recent years, descriptive analyses using statistical methods were
performed to estimate asbestos-containing materials in the regional or
citywide building stock [46], [47], [57]. At a more detailed level, the
remaining asbestos quantity, substance type, abatement priority, cost,
detection likelihood, and source components were specified in provincial
residential buildings [32], [45].

High detection rates of asbestos were observed across studies, yet the
exact values vary according to local contexts, summarized in Table 5.1. The
highest value was reported by Franzblau et al. [32] that around 95% of
asbestos presents in the abandoned houses in Detroit in the US, whereas
Govorko et al. [45] recorded 82% of in situ asbestos in Australian dwellings.
The results from our study were in line with the former research, reporting
average finding asbestos in 85% of the multifamily houses and 61% of the
single-family houses. The prevalent asbestos materials identified in
renovated and demolished buildings in Gothenburg and Stockholm were
pipe insulation (82%), door or windows insulation (81%), and cement panel
(73%) in multifamily houses, and cement panel (45%), and pipe insulation
(38%) in single-family houses. Similarly, floor mat (51%) and cement
panels (48%) were detected frequently in Detroit in the US, but different



from common asbestos materials in switchboard (50%), eaves and soffit
linings (44%) in Australian homes. In addition, 19% of the observed
Swedish buildings contained PCB in joints or sealants, which is slightly
more than 14% of detectable PCB-containing sealants in 70 buildings
measured in Toronto, Canada [132]. Overall, the detection rates of asbestos
and PCB-containing components are in agreement with those in other
countries, and the small variances can be understood from different
construction traditions and materials used.

Table 5.1 Summary of the detection rates of asbestos-containing materials
from the actual study compared with previous research.

Franzblau et al. Govorko et Actual study
[32] al. [45]

Input data Demolition projects ACM app Building registers

Detection reports Hazardous waste inventories
Building class Abandoned Single-family Multifamily house (left)

residential dwelling house Single-family house (right)

Aggregation level Citywide Regional Citywide
Asbestos 95% 82% 85% 61%
Pipe insulation 49% - 82% 38%
Valves - - 69% 21%
Door insulation 2% - 81% 6%
Cement panel 35% 28% 73% 45%
Tile or clinker - - 50% 25%
Carpet glue - - 53% 14%
Floor mat 10% 27% 57% 48%
Ventilation channel 55% - 47% 7%
Joint 12% - 67% 33%

Relevant research on hazardous material prediction was only found in
studies estimating the spatial distribution of asbestos-cement roofing using
supervised learning [58] and deep learning [60]. Wilk et al. [58] concluded
the Pseudo-R?, the proportion of variation in the outcome explained by the
predictor variables, range between 54-76% for predicting the quantity of
asbestos-cement products in the Polish building stock. In comparison to
this, our study reached an average of 74-87% accuracy for predicting the
presence of asbestos pipe insulation in multifamily houses, while 83-93%
in average accuracy for PCB joints or sealants in school buildings. Besides,
the recall rates and the proportion of actual positives identified correctly for
both cases are also high, 78%-91% and 83%-92%, respectively. A summary
of the accuracy rates in predicting asbestos-containing materials from the
study and the previous research was described in Table 5.2. Despite
disparate prediction targets and building stocks, the indirect comparison can
offer insights into how well the developed models perform.
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Misclassification comes with a high cost, particularly the type II error where
hazardous materials are categorized as false negatives. However, cost-
sensitive learning, a learning type adjusting the assumption of equal error
and class distribution by most machine learning algorithms [143], was
proved to successfully address the class imbalanced classification with the

high F1 scores and the comparative accuracy-recall rates.

Table 5.2 Summary of the prediction accuracy of asbestos-containing
materials from the actual study compared with previous research.

Wilk et al. [58]

Kréwczynska et al.

Actual study

[60]
Input data Socio-economic  Aerial photographs Building registers
data, built-up Field survey Hazardous waste
areas, field inventories
inventory of
asbestos-cement
roofs, historical
data of asbestos
plants
Features (Localization, (The type of roofing, (City,
type, quantity the degree of roof EPC category,
and amount of pitch, the type of EPC type
asbestos-cement asbestos-cement oo
o . Construction year,
products, building materials )
bulldlng Renovated,
features like Renovation year,
roof slope, type Floor area,
of function) Numbers of floors,
Number of
basements,
Number of
stairwells,
Number of
apartments,
Ventilation type)
Classifiers Random forest ~ Convolutional Neural — Logistic regression
Networks Kernel SVM
k-NN
Random forest
XGBoost
CatBoost
Asbestos roofing 75-82% 87-89% -
Asbestos pipe insulation - - 55-89%
PCB joints or sealants - - 67-95%
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Moreover, the information concerning accuracy change associated with
the training data size from the learning curves helps determine sufficient
data size. Identifying the minimum required data size helps save time and
effort for data collection and processing. Franzblau et al. [32] used
information abstractors to extract information on asbestos-containing
material from the municipality’s online demolition databases and the pre-
demolition inspection reports. However, this automatic information
retrieval was not possible in our case due to the lack of searchable
demolition databases and a mix of varied formats of pre-demolition audit
documentation. This fact signifies the need to establish an online searchable
data warehouse for archiving pre-demolition audits and reform the manner
of documenting, collecting, and archiving hazardous waste inventories.

For predictive analysis in general, simple models with few major
contributing features are preferable to prevent the risk of overfitting. This
objective was achieved by plotting the optimal number of features and their
importance. Feature selection was executed by considering the data
availability of the prediction targets in the national building register
database. For instance, schools are exempted from building taxation; thus,
the available features can only be sourced from municipal cadastral and
EPC data. Given various data accessibility and quality for individual
building classes, merging a comprehensive building database can minimize
the risk of data loss for demolished and renovated buildings in modeling.

In the previous study by Mecharnia et al. [61], the temporal descriptions
of marketed products were found the most critical feature concerning the
potential occurrence of asbestos materials in buildings. Using construction
year as a predictive variable, the probability of the asbestos-containing
adhesives, glues, coating, and sealants can be estimated for the French
building stock built between 1946-1994. Other features, such as distance to
the asbestos manufacturing factories and socio-economic factors, were also
suggested relevant to the use of asbestos-cement products in Poland from
former research [57], [58], [60]. As the machine learning models were
developed for the two most populated Swedish municipalities with a high
proportion of national building stock, geographical and socio-economic
factors were not considered in the first iteration of the study. Our results are
in agreement with the findings from Mecharnia et al. [61] and indicate that
construction year is a prominent feature for predicting the presence of
asbestos pipe insulation. Besides, floor area, renovation year, and the
numbers of floors and apartments are secondary features to identify
multifamily houses with presumed asbestos contamination. Similarly,
construction year and the balanced ventilation system are the most
contributing features to predict the PCB joints or sealants in school
buildings. The floor area, the city where buildings are situated, and balanced
ventilation with a heat exchanger can also impact the prediction results. To
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summarize, these two attempted predictions show the usability of the
proposed machine learning pipeline regarding screening the multiple
assortments of hazardous materials and detail the predictive variables
associated with their potential presence efficiently.

5.2.2. Physical Interpretation of Analytical Outcomes

The preliminary prediction outcomes verified that machine learning
algorithms could capture the underlying occurrence patterns of hazardous
materials in the Swedish multifamily houses and school buildings. Various
evaluation metrics were used to assess the model performance, including
the confusion matrix and the ROC AUC. The generated accuracy, recall,
and F1 scores represented scale variables on how well the models perform
in the binary classification on the testing data subsets and whether the
recognized parameters contributing to the prediction results are reliable
based on the SHAP values [112]. In these senses, the achieved pattern
identification at the stage should be regarded as an indirect implication with
respect to feature importance and tendency indication of the feature values
to the attempted prediction tasks, rather than a direct diagnosis of the
presence of hazardous materials for buildings as a whole. To obtain explicit
classification results, the exploratory models need to be refined, trained
with more data, and verified with new sets of multifamily houses and school
buildings as case studies before deployment [50].

In the next steps of prediction on Gothenburg and Stockholm building
stocks, the transformation of the building register dataset is required to
stratify building classes based on the available municipality building
category and type codes, as well as the EPC building categories and types.
In other words, machine learning models are versatile to the input data; thus,
the consistency of building parameter distributions between sample
buildings and the building stock should be comparable. Besides, despite the
previous research verifying the use of industrial construction techniques and
materials in the Swedish multifamily houses built during the post-war
period [4], the details of building components are lacking in the national
building register database. Because of this reason, it is not possible to use
the building material information, such as roofing, ground structure,
building framework, and walls in demolition plans, as input features to train
machine learning models. The missing information regarding this can be
improved if the building structure and materials are included in the future
EPC surveys or the development of a digital hazardous waste inventory
protocol.

In practice, the prediction accuracy cannot reach 100% as machine
learning models simplify the reality and, in most cases, use majority votes



in classification [6], [81]. To evaluate the usefulness of the identified
patterns, the involvement of practitioners for needs assessment is planned
in future research. The two-fold stakeholders’ need analyses entail
determining the requirements from domain experts and potential interests
from stakeholders such as property owners, contractors, and waste handling
companies. Through interviews and workshops with professional auditors,
we can get a deeper understanding of exactly what type of hazardous
materials to expect in different building classes and which to focus on in the
prediction. This is essential to position the research values to the practical
environmental investigations and examine whether the identified patterns
from machine learning modeling are reasonable. After that, following
discussions with the property owners, contractors, and waste handling and
disposal companies, a hazard exposure assessment tool and a conceptual
cost estimation framework can be designed accordingly. In this way, the
risk of unexpected disruption of the renovation or demolition projects due
to emergent decontamination can be mitigated.

5.2.3. Method Replicability in Sweden and Other Countries

In a broad sense, method replicability entails reproducing the proposed
approach in international contexts and generalizing the deployed models on
anational scale. The former concerns the readiness of the data infrastructure
in other countries, and the latter deals with data representation for upscaling
the models in Sweden. The CDW management maturity in the EU countries
to adopt the proposed method was evaluated and briefly discussed in Paper
11
A comprehensive data infrastructure along the CDW value chain is the
prerequisite to improving data availability and accessibility. In many EU
countries, a legal obligation is enforced to report the amount of used and
removed asbestos products in all renovation and demolition projects [34].
The information about asbestos wastes is more comprehensive than other
hazardous materials, leading to a considerable number of relevant studies.
For instance, Wilk et al. [57] and Mecharnia et al. [61] exploited national
asbestos material databases in Poland and France. These databases become
valuable sources that form the basis for applying the proposed data-driven
hazardous material identification approach. With the gradual uptake of pre-
demolition audits, more comprehensive risk management of hazardous
material stocks, i.e., PCB, radon gas, can be expected in the near future.
Back to the Swedish context, the developed models will be deployed for
estimating the probability of hazardous materials detection in the large
economic regions of Gothenburg and Stockholm [104]. The hazardous
waste inventories carried out between 2010-2020 have been collected from
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the two largest Swedish cities, Gothenburg and Stockholm, which in some
way is representative of the Swedish building stock. Two aspects are taken
into account for assessing the models’ upscaling potential. Firstly, regional
differences in building stock composition and the sampling bias needed to
be overcome by appending more observations from different municipalities.
Next, the disproportion between the demolition building classes and their
corresponding constitution in the building stock was recognized. Yet, the
focus of the prediction was on the primary building classes in the Swedish
building stock. According to the latest report of dwelling stock (2021) from
Statistics Sweden [144], multifamily houses account for 51% of the five
million dwellings, followed by 41% of one or two dwelling buildings, 5%
of special housing, and 2% of other buildings. In terms of building registers,
around 91% of multifamily houses are included in the Swedish EPC,
leading to broad data coverage of this building class [31]. School buildings
over 1000 m? are categorized as special buildings in the Swedish EPC data
[145], and the exposure to asbestos and PCB are constantly monitored and
decontaminated by the responsible authorities [146]. Based on this, there
are sufficient reasons to prioritize these two building classes for
contaminant risk screening.

5.2.4. Applications of the Prediction Method

Several opportunities and challenges exist for further developing the
applications of the prediction methods. First and foremost, the principal
advantage of using machine learning methods is that well-defined BIM
models are not required to attain adequate accuracy in predicting end-of-
life arising substances [50]. This offers the opportunity for exploiting the
identified patterns to screen the suspected buildings as complementation for
the existing environmental investigations. Nowadays, detailed hazardous
waste inventories are only made for complicated, large-scaled, or high-risk
buildings. A broader coverage of buildings is needed to prevent
contaminated materials from entering the waste stream.

Accordingly, the prediction models can be incorporated into digital
applications to facilitate the self-assessment of hazardous material presence
and exposure risk. One of the existing solutions is the Hazardous Waste
App launched by The Swedish Construction Federation in 2013, which
helps practitioners identify hazardous waste and guide waste management
[2]. Govorko et al. [47] also developed the ACM Check, a mobile
application that targets Australian house owners to identify asbestos
materials. It prioritizes material condition and disturbance likelihood and
compiles the inspection results into a summary report. In the future, the
initial summary reports can be potentially used for permit application and



quality control by responsible authorities, alleviating the knowledge gaps
of auditing and enhancing the screening scope for private buildings.
Meanwhile, the digital solution can simplify data collection for hazardous
material research and facility management for the existing building stock.

In fact, the substantial challenge for deploying the prediction method lies
in the accessibility of the validated data, as discussed before. The key points
are therefore enabling retrieving central building registers, conducting a
pre-demolition audit inventory and matching the data. The significance of
establishing a routine to streamline the data collection, transformation, and
compilation process in a queryable updating database was stressed in
former studies. Govorko et al. [46] assessed the detection accuracy of using
semi-automatic identifiers for asbestos materials compared to onsite
inspection. Substantial agreement was found between the two methods and
verified the implementation potential of the mobile application. Moreover,
Franzblau et al. [32] explored the automatic data transformation method
with data abstraction algorithms in demolition documents. By retrieving
information systematically, the risk of introducing bias in estimating certain
hazardous materials can be reduced.

A standardized data format and process for data collection are crucial for
the smooth integration of diverse data sources [31]. Therefore, there has
been a call to develop a harmonized protocol at the EU level to improve
CDW data management and inventory quality [41]. The goal of developing
a harmonized digital protocol is to link inventories for hazardous waste in
practical demolition activities. The integrated protocol can overcome the
lack of back-feeding quality control information loop and integrate regional
auditing practice. The Flemish traceability management system Tracimat is
the pilot project that assures hazardous waste inventory quality and attests
the conformity with the waste management plan for selective demolition
[41]. These documents are then appended to the tender specifications for
selective demolition to guarantee that the contractors take the cost of
decontamination into account. By consociating actors in the CDW value
chain, the ambition for realizing a clean cycle from secondary materials will
become closer to reality [2].
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6. Conclusions

The thesis demonstrates how to use information from hazardous waste inventories
as input data to predict potentially contaminated buildings. Two common types of
hazardous materials in multifamily houses and school buildings were showcased to
explore the method’s potential for accurate risk assessment. This data-driven
approach can be replicated in other countries to enhance in situ hazardous material
screening, enabling well-planned contaminant removal and fostering recycled
material purity. The contributions of the study can be understood from three
perspectives — data assembling, method development, and practical implementation,
described in detail below:

The study contributes to assembling a hazardous material dataset constituted of
environmental information and building register data. To our understanding, this is
one of few pioneer studies that compiles comprehensive hazardous material
detection records from hazardous waste inventories. By validating the field data’s
quality and quantity, the research granularity of in situ hazardous material can be
refined to specific building classes and extended to other hazardous components
besides asbestos-containing materials, which are the most investigated in the former
research.

The second contribution relates to method development in predicting the
remaining hazardous materials in the building stock. Previous works had tried to
infer the detection patterns of asbestos-containing materials using statistical
approaches, which help characterize the local building stock but have limited global
applications. Using machine learning techniques, the ability to swiftly adapt to new
contexts can be assumed. The developed machine learning pipelines and models
have promising generalization performance that can predict the possible presence
of hazardous materials in not yet investigated buildings.

Lastly, the study has marked contributions to practical implementation by
reviewing the procedure and format of hazardous waste inventories. The results
provide suggestions for future improvement, including establishing a digital
harmonized pre-demolition protocol and the workflow to streamline the data
coupling process between field data and building registers. The current expert
knowledge on hazardous material identification depends on the historical timeline
of asbestos and PCB-containing materials and the practical experience. The study
verified the general assumptions by quantifying the detection likelihood of various
hazardous materials. The prediction outcomes can assist the pre-demolition audits
by screening the likely exposed buildings, lowering the risk of unexpected
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disruption in demolition and renovation projects due to required decontamination.
Acquiring the information beforehand can support decision-making concerning
semi-selective demolition and clean material recovery for end-of-life buildings.
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6.1.  Answers to the Research Questions

The first research question (RQ1) concerns the research front of hazardous
material analytics.

RQI  What are state-of-the-art data-driven applications for hazardous
material management?

The results of Paper I show that the emergent data-driven techniques mainly
relate to in situ asbestos-containing materials’ identification, separation,
and collection. These three objectives are fundamental for advancing the
EU Construction and Demolition Waste Management Protocol
implementation. Applying supervised and deep learning algorithms on
remote sensing and registered data can estimate the spatial clusters of
asbestos cement roofing on a national scale. On the other hand, statistical
approaches were employed to characterize the detection patterns of
asbestos-containing materials and predict their occurrence likelihood in the
existing building stock. Performing unsupervised learning on hyperspectral
images enables undestructive onsite detection of asbestos materials. Lastly,
supervised, unsupervised, and deep learning classifiers were proved to
succeed in the optical sorting of CDW materials or minerals.

The last two research questions (RQ2 and RQ3) involve data mining and
machine learning model creation and evaluation.

RQ2  What is the potential to use data from hazardous waste inventories
to assess the risk of hazardous materials in the building stock?

The results of Paper II show that information from hazardous waste
inventories contains valuable detection records on multiple hazardous
materials in demolished and renovated buildings. Exploiting this
demolition-related building-specific information can enrich the national
building database with regard to the presence of hazardous materials and
substances. Accordingly, a hazardous material dataset based on the
hazardous waste inventories from the pre-demolition audits conducted
between 2010 and 2020 in Gothenburg and Stockholm in Sweden was
created and validated. The empirical study quantified the contamination
likelihood of asbestos, PCB, CFC, and mercury substances in materials and



products based on four types of inventory for different building classes.
Hazardous materials of low data availability and quality in certain building
classes were underlined and excluded from the dataset to be used for
machine learning modeling. By summarizing the results with a proposed
cross-validation matrix, the promising homogeneous data subgroups were
stratified and used to delineate the prediction scope. The potential
subgroups for machine learning modeling are identified as asbestos pipe
insulation in multifamily houses and PCB joints or sealants in school
buildings.

RQ3 How accurate can asbestos and PCB-containing materials in specific
building classes be predicted using machine learning models?

The results of Paper 11l confirmed the pattern identification of asbestos and
PCB-containing materials in multifamily houses and school buildings using
supervised learning algorithms. Applying the developed machine learning
pipeline, the presence of asbestos pipe insulation can be predicted with 74%
average accuracy and 78% average recall, while the corresponding results
for PCB joints or sealants are 83% and 83%. The performances between
classifiers were evaluated and verified for ordinary learning and cost-
sensitive learning for class imbalanced dataset. Besides, sufficient data for
good prediction performance was ascertained, preventing the additional
cost of data collection and processing. Construction year and floor area were
found to be substantially associated with the detection of asbestos pipe
insulation and PCB joints or sealants. Additionally, the type of ventilation
system also indicates the presence of PCB joints or sealants. Other features
with medium impact to the prediction results include renovation year, the
number of floors and apartments. In short, the fine-tuned optimal models
can be used as a means of decision support when screening the potential
presence of specific hazardous materials in the particular building classes.
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7. Future Research

The work up until the PhD defense will expand the prediction scope to evaluate the
available hazardous material building components and models’ robustness in
predicting the presence of hazardous materials in the Swedish building stock. To
scale up the proposed approach to practical applications, three aspects will be
included in future research:

Regarding modeling, the developed machine learning classifiers require
refinement to have an optimal prediction performance to the
heterogeneous national building stock. This entails performing
extensive hyperparameter tuning and sensitive analysis. Beyond the
two showcases, various individual models will be developed for
predicting multiple asbestos and PCB materials in particular building
classes. More comprehensive model parameters should be tested to
ascertain the potential synergies between the presence of hazardous
materials. Besides the applications of deep learning algorithms, an
emergent technique used frequently for CDW quantification, should be
explored. Before model deployment for prediction on the national
building stock, more data must be collected from another city for
accuracy verification and model generalization improvement.
Topicwise, the scope of hazardous material prediction will be extended
to understand the correlation between ground sourced radon and radon
emitted from radioactive concrete, where its detection patterns in the
Swedish building stock have not been investigated. Through
constructing machine learning prediction regressors, the buildings
potentially built with radioactive concrete can be characterized. The
outcome can contribute to policy measures for responsible authorities
and abatement planning for building owners.

Due to the Covid-19 pandemic, the planned stakeholder meetings for
the needs assessment were postponed. The early findings presented in
this thesis will be used to inform stakeholders to explain the
possibilities and challenges in using the proposed method. Workshops
with domain experts and property owners will be arranged to
understand their needs and requests to facilitate practical work.
Relevant stakeholders are property owners, authorities Swedish
National Board of Housing, Building and Planning (Boverket),
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auditors, contractors, and demolition and waste handling companies.
Integrating their environmental-economic perspectives can improve
model usability in practice. The research outcomes are estimated to be
the basis for developing digital tools, such as a suggestive layout for the
digital protocol and a web interface or mobile applications for
hazardous waste inventories for auditors and property owners.
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Appendix A

Table Al. The validation metric describes the interpretation scores for each of the
ten observed properties. The summarized table below is the aggregated results from
ten pairs of interpretation scores. In each pair, the aligned interpretation was marked
0, the opposite denoted as 1. Then the results from each pair were further compared
to identify the disagreement. The aggregated results show the interpretation scores
vary significantly between properties, which may be due to property complexity and
information clearness in different inventory types. Also, building information and
demolition-related information were interpreted differently. Higher agreements on
asbestos detection, construction year, asbestos-containing pipe insulation detection,
asbestos-containing carpet glue detection, PCB detection, and mercury-containing
light tube detection were reached. The outcome from the exercise led to a consensus
on a rigorous routine for interpretation of information in audits documentation and
reevaluation of data collection and compilation.
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Property* P1 P2 P3 P4 PS5 P6 P7 P8 P9 P10 Total
Building information

Construction year 1 0 0 0 0 1 0 1 1 4
Renovation year 1 1 0 1 1 1 1 1 1 9
Number of floors 0 1 0 1 1 1 0 1 1 7
Floor area 1 1 1 0 1 1 1 1 1 8

Demolition-related informati
Investigation scope
Decontamination history
Asbestos

Pipe insulation

Valves

Door/windows insulation
Cement panel
Tile/clinker

Carpet glue

Floor mat

Switchboard

Joint

PCB

Joint/sealant

Sealed double windows
Capacitors

Acrylic flooring

Door closer

Oil in cable

CFC

Fridge/freezer

Building insulation
Cooling unit

Rolling gate

Mercury

Lighting tube
Relay/switch

Level sensor
Thermometer
Thermostat

Water lock

Low energy lamp
Doorbell
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Total 21 10 39 10 39 40 34 39 298

(]
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(]
w

* Property 1: Warehouse/Industrial building/Office from protocols and demolition plans.
Property 2: Single-family house from control plans.
Property 3: Multifamily house from demolition plans.
Property 4: Complementary building from demolition plans.
Property 5: School from reports.
Property 6: Multifamily house from reports and demolition plans.
Property 7: Office/Commercial building from reports.
Property 8: Industrial building from reports.
Property 9: Industrial building from reports and demolition plans.
Property 10: Single-family house from demolition plans.
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Appendix B
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Figure (A2.1) Correlation plot for asbestos pipe insulation in multifamily houses.
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Figure (A2.2) Correlation plot for PCB joints in schools.

Figure A2. Pairwise correlation plot with Pearson’s correlation coefficients (7).
Directions of the correlation were shown in red (positive), white (neutral), and blue
(negative) colors. No strong correlation (| r | > 0.7) was found for asbestos pipe
insulation and PCB joints.
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Appendix C

Table A3. Stepwise logistic regression shows correlations (r) their significance (p)
between the target variable asbestos-containing pipe insulation and the other
predictive variables in multifamily houses. The categorical variables were
transformed to dummy variables using one-hot-encoding, then removed one of the
dummy variables in each category as comparative values for regression analysis.

Model 1 Model2 Model 3

Construction year 0.03**  0.03* 0.02
Renovation year -0.01 -0.02 -0.02
Number of floors -0.11 -0.13 -0.11
Floor area 0.00 0.00 0.00
Number of basements 0.12 0.15 0.19
Number of stairwells 0.09 0.07 0.07
Number of apartments -0.01* -0.02 -0.02*
Exhaust 0.66 0.78
Balanced 0.10 0.12
Balanced with heat exchanger -0.51 -0.85
Natural ventilation 0.62 0.76
Renovated -0.46 -0.24
City_Gothenburg -0.26
EPC building category Multifamily house -1.48
EPC building type Gable -0.62
EPC building type Intermediate -0.12
Constant -24.21 -14.81 -0.20
No. observations 139 139 139
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Table A4. Stepwise logistic regression shows correlations (7) their significance (p)
between the target variable PCB-containing joint or sealant and the other predictive

variables in school buildings.

Model 1 Model 2 Model 3
Construction year 0.01 0.01 0.01
Renovation year -0.00 0.00 0.01
Number of floors -0.23 -0.10 -0.03
Floor area 0.00 0.00 0.00
Number of basements 0.08 -0.36 -0.10
Number of stairwells 0.31 0.40 0.50
Number of apartments -0.19 -0.39 -0.19
Exhaust -0.25 -0.12
Balanced 0.93 0.99
Balanced with heat exchanger -1.21%* -1.56%*
Natural ventilation -24.61 -24.11
Renovated -0.10 0.13
City_Gothenburg -0.63
EPC building category Multifamily house -3.00*
EPC building type Gavel -0.85
EPC building type Mellanliggande -25.20
Constant -6.42 -16.45 -27.97
No. observations 109 109 109
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