
sustainability

Article

A Data-Driven Approach to Assess the Risk of Encountering
Hazardous Materials in the Building Stock Based on
Environmental Inventories

Pei-Yu Wu 1,2,* , Kristina Mjörnell 1,2 , Mikael Mangold 1, Claes Sandels 1 and Tim Johansson 3

����������
�������

Citation: Wu, P.-Y.; Mjörnell, K.;

Mangold, M.; Sandels, C.; Johansson,

T. A Data-Driven Approach to Assess

the Risk of Encountering Hazardous

Materials in the Building Stock Based

on Environmental Inventories.

Sustainability 2021, 13, 7836.

https://doi.org/10.3390/su13147836

Academic Editor: Wann-Ming Wey

Received: 31 May 2021

Accepted: 10 July 2021

Published: 13 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 RISE Research Institutes of Sweden, 412 58 Gothenburg, Sweden; kristina.mjornell@ri.se (K.M.);
mikael.mangold@ri.se (M.M.); claes.sandels@ri.se (C.S.)

2 Department of Building and Environmental Technology, Faculty of Engineering, Lund University,
221 00 Lund, Sweden

3 Resources, Energy and Infrastructure, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden;
tijoh@kth.se

* Correspondence: pei-yu.wu@ri.se; Tel.: +46-70-462-07-23

Abstract: The presence of hazardous materials hinders the circular economy in construction and
demolition waste management. However, traditional environmental investigations are costly and
time-consuming, and thus lead to limited adoption. To deal with these challenges, the study inves-
tigated the possibility of employing registered records as input data to achieve in situ hazardous
building materials management at a large scale. Through characterizing the eligible building groups
in question, the risk of unexpected cost and delay due to acute abatement could be mitigated. Merg-
ing the national building registers and the environmental inventory from renovated and demolished
buildings in the City of Gothenburg, a training dataset was created for data validation and statistical
operations. Four types of inventories were evaluated to identify the building groups with adequate
data size and data quality. The observations’ representativeness was described by plotting the distri-
bution of building features between the Gothenburg dataset and the training dataset. Evaluating the
missing data and the positive detection rates affirmed that reports and protocols could locate haz-
ardous materials in the building stock. The asbestos and polychlorinated biphenyl (PCB)-containing
materials with high positive detection rates were highlighted and discussed. Moreover, the potential
inventory types and building groups for future machine learning prediction were delineated through
the cross-validation matrix. The novel study contributes to the method development for assessing
the risk of residual hazardous materials in buildings.

Keywords: hazardous materials; asbestos; PCB; environmental investigation; statistical inference;
cross-validation; machine learning pre-processing

1. Introduction

Although a series of bans for the use of hazardous materials in construction have been
imposed since the 1970s, an appreciable quantity of contaminated materials remains in the
existing building stocks [1]. The frequent presence of asbestos-containing materials [2,3]
and PCBs (polychlorinated biphenyls)-containing components [4] is the result of mass
production and adoption in the 1920s–1990s [5]. In addition to the negative concerns of
human health and the environment, demolished and renovated projects become more
expensive and take a longer time if hazardous materials are encountered unexpectedly. The
decontamination and abatement cost account for a noticeable amount for waste disposal
and working precautions’ preparation [6].

Advanced data mining and statistical learning have been accessible to emerging
research fields in recent years. Information about the building stock has also been made
more available, mainly through governmental open database initiatives in several different
areas, i.e., investigation records, project economy, and so on [6]. These two developments
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dramatically improve the estimation capability for locating hazardous building materials
in demolition and renovation projects. Furthermore, by coupling building stock data and
hazardous product registers, predictive detection of in situ hazardous building materials is
made possible [7].

The study explores and develops a data-driven approach to assess hazardous ma-
terials’ detection in the building stock. The importance of effective hazardous materials
management is recognized through updating legal requirements and extending criteria
for a healthy living environment in building certification [8]. By increasing the quality
control and locating the potential in situ hazardous materials, a step toward the circular
economy for construction and demolition waste (C&DW) can be realized [9]. For instance,
mandatory pre-demolition audits (also called environmental audits or waste audits) are
enforced in Austria, Bulgaria, the Czech Republic, Finland, France, Hungary, Luxembourg,
The Netherlands, Romania, Spain, and Sweden, whereas optional environmental investiga-
tions have been applied to a limited extent in Belgium, Denmark, Germany, Ireland, Italy,
Slovakia, and the United Kingdom for 5–10 years [10]. Advantages for pre-demolition
audits include improving hazardous construction and demolition waste identification, as
well as promoting resource circularity and efficient use of mixed wastes [11]. According
to the breakdown of construction and demolition wastes’ generation, Sweden presents a
higher percentage of hazardous wastes (13%) than the average among European Union
(EU) countries (2.5%) owing to its sound separation systems as well as a long tradition of
environmental legislation [9]. The use of asbestos and PCB in building materials has been
prohibited since the middle of the 1970s in Sweden. Several other EU countries have also
achieved advanced progress in establishing waste management systems and databases.
For example, pre-demolition audits for the certain scale of the non-residential building
are mandatory in Flanders [12]. With an increasing number of emerging databases and
extensive documentation, the goal of tracing in situ hazardous building materials through
employing data mining on registered records could be attained [13].

Built upon statistics, machine learning, and pattern recognition techniques, data min-
ing enables automatic or semi-automatic exploration of large amounts of data to discover
patterns or rules [14]. Owing to these benefits and building data availability, the potential of
data-driven built environment management is shown. However, previous literature sheds
light on significant challenges for practical implementation, including time-consuming
pre-processing obtaining complete digital datasets [15]. Furthermore, limited information
regarding the extent of the previous adoption is available, leading to a struggle in design-
ing precautionary abatement policy and decontamination plans [6]. Several researchers
attempted to detect asbestos-containing materials through developing new methodologies
considering these barriers and knowledge gaps. Employing temporal descriptions of mate-
rials in an ontology-based approach; prediction of the presence of asbestos in buildings
was explored by Mecharnia et al. [7]. Similarly, statistics were also employed in study
inspection reports and online demolition databases to quantify the amounts and abatement
costs for asbestos-containing materials in abandoned residential dwellings by Franzblau
et al. [6]. Govorko et al. [2,16] developed a mobile application to investigate the types and
the conditions of asbestos-containing materials in residential settings.

To realize the Construction 2020 strategy [17] and the Communication on Resource
Efficiency Opportunities in the Building Sector [18], the protocols and guidelines for waste
audits before demolition and renovation for buildings were established by the EU Com-
mission [19]. The emergence of relevant tools and complementary legislation is expected
to improve current practice in waste identification, source separation, and collection [11].
Although Sweden has introduced obligatory environmental audits since 1995, several prac-
tical predicaments exist for using the data, i.e., the hardcopies of environmental inventories
are kept by several different authorities, a harmonized protocol at the national level is lack-
ing, and no digital query-based database of in situ building materials is available yet [11].
This article attempts to address these challenges by developing a generalizable approach
and extending the investigation scope to multiple hazardous materials in the building
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stock. The empirical study aims to quantify the risk of residual hazardous materials in
the existing buildings and investigate the data quality and quantity of the environmental
audits for advanced analysis. Through a case study in the City of Gothenburg, the potential
of using environmental inventories to assess the extent of in situ hazardous materials has
been explored. The first part of the research involves data assembling and validation,
followed by cross-comparison and descriptive statistics of the training dataset. The study
results can offer valuable insights into the frequent occurrence of hazardous materials
in demolished and renovated buildings and specify building groups where occurrences
are more likely. Furthermore, the pilot work lays a good foundation for the subsequent
machine learning modeling to predict the presence of hazardous materials. To achieve the
research objectives, three research questions are formulated as follows:

RQ1: What is the potential for employing environmental inventories as input data to assess
the presence of hazardous materials in the building stock?
RQ2: How representative is the training dataset in relation to the Gothenburg building stock?
RQ3: How can the risk of encountering hazardous materials in the building stock be assessed?

2. Materials and Methods
2.1. Study Design

Given that no digital pre-demolition audit dataset exists in Sweden, nor can building
material records be found in the national building registers, the study proposed an innova-
tive data coupling method by adding environmental inventories from the field study to the
building information database from authorities. A similar data coupling approach has been
performed by Wilk et al. [20] and Krówczyńska et al. [21] to study the spatial distribution
of asbestos-cement roofing. To assess the potential of using environmental inventories for
hazardous materials identification, a training dataset consisting of pre-demolition audits
from demolished and renovated buildings in the City of Gothenburg constructed earlier
than 1982 and national building registers at a regional scale was created. The developed
training dataset compiling the registered records of the environmental investigation from
the past decade can be regarded as a pioneered study of sustainable building material
management. Data validation for the acquired documents becomes a fundamental step for
the future machine learning study that leverages the existing data labels for predicting the
potential presence of the remaining hazardous materials.

The study design illustrated in Figure 1 followed the procedure of training dataset
creation, processing, and analysis. Firstly, registered-based data were collected from
various databases for quality and quantity control. Then, the following data processing
included data reformatting, merging, and cleaning. Finally, data analysis was performed
in four parts: validating data quality and quantity, evaluating data representativeness with
the Gothenburg building stock, assessing missing data and the detection records of each
building subgroup, and cross-validating investigation data for risk assessment.
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Figure 1. A proposed procedure for creating the training dataset comprised of (1) data collection, (2) data processing, and
(3) data analysis.

2.2. Data Collection

Several data collection relating tasks were performed sequentially to ensure data oper-
ationality. First and foremost, environmental inventories and national building registers
were collected from different authorities. Pre-demolition audits were gathered from the
Archive of the City of Gothenburg during the permit application period from 2010 to 2020.
Currently, no query-based database of environmental records exists, which allows free
search in the text masses. Therefore, the search process was done manually in the building
permit register system using the keywords “demolition”, “renovation”, “reconstruction”,
“modification”, and “alteration” in the document titles. Extensive document screening
was executed to identify the projects with environmental audits in their permit decisions.
Thereafter, investigation documents were requested and reformatted into a digital dataset.

Meanwhile, national building registers were received from the Swedish Cadastral
and Land Registration Authority, where real estate registers from municipalities and the
Swedish Tax Agency are kept. Besides, the Energy Performance Certificates were collected
from the Swedish National Board of Housing, Building, and Planning. Merging these
national datasets was executed with GIS Feature Manipulation Engine from Safe Software
to constitute the comprehensive dataset for the research purpose. This comprehensive
dataset comprised registered buildings from the three major economic regions in Sweden:
Stockholm, Gothenburg, and Malmö regions. The methods for merging national datasets
were developed by Johansson et al. [22] and can add additional auxiliary data for analyses.
Then, the data extraction was conducted to retrieve the Gothenburg city dataset for the
representativeness study concerning building characteristics. Many-to-many relationships
were not included in the larger Gothenburg dataset as register data were at the property
level, giving a data loss of approximately 10%. The metadata of the available Gothenburg
dataset are appended in Appendix A [23]. Built upon the general building information
from the national building registers and the detection records from the environmental
inventories, the training dataset, a subset of the Gothenburg building stock, was created
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for further data processing and analysis. Many-to-many relationships were examined
manually for the observed buildings in the training dataset.

2.3. Data Processing

To ensure coherent documentation of environmental inventories and improve the
data readability for coding software, a standard procedure was developed and executed
iteratively in creating the training dataset. The process consisted of (1) creating a dataset
structure by assembling common variables across environmental inventories with the
building as an observation unit; (2) checking data eligibility in terms of construction year
and investigation completeness; (3) leveling data quality by clustering inventory types
and investigator’s experiences, then converting the data to pre-defined data types; (4)
extracting relevant building registers from the comprehensive datasets using national
real estate index and harmonizing updates across datasets; (5) merging and reformatting
building registers and environmental inventory to become a training dataset; and (6)
revising and manipulating variables of interest through aggregating multiple records to
verify data consistency for construction year, renovation year, area, and so on. The final
variables of interest and their metadata in the training dataset are presented in Table 1.

Table 1. Overview of metadata in the training dataset.

Variable Category Variable Specification Data Type Data Source

Environmental inventories
Matching keys National real estate index String and numerics [index] Permit registers

Address String
Investigation Document type Nominal [report, protocol, control plan, demolition plan] Environmental audits

Scope Ordinal [entire, part]
Investigation year Scale variable [year]
Investigator String
Decontamination Nominal [asbestos, PCB, NA]

Hazardous substance
Asbestos Nominal [positive, negative, NA]

Environmental auditsPCB (polychlorinated biphenyl) Nominal [positive, negative, NA]
CFC (chlorofluorocarbon) Nominal [positive, negative, NA]
Mercury Nominal [positive, negative, NA]

Hazardous material Building components * Nominal [positive, negative, NA] Environmental audits
Building parameter Class String [type] Permit registers

Usage of the building String
Construction year Scale variable [year]
Renovation year Scale variable [year]
Renovation part String [the extent of renovation]
Building structure ** String [material]
Interior areas (BOA) Scales [m2 ]
Floors Ordinal

National building registers
Matching keys National real estate index String and numerics [index] Swedish Tax Agency

Address String Board of Housing
Building usage Class code Nominal Municipality

Category code Nominal

Building parameter Construction year Scale variable [year] Swedish Tax Agency
Renovation year Scale variable [year]
Complexity Nominal [complex, non-complex] Board of Housing

Ventilation type Nominal [exhaust, balanced, balanced with heat
exchanger, exhaust with heat pump, natural ventilation]

Building area Interior areas (BOA) *** Scales [m2 ]
Floors Ordinal

* Building components imply the building materials that contain primary or secondary contaminants. The former are made of hazardous
substances and the latter contain transmitted hazardous substances through external sources. ** Building structure describes the building
components, including foundation, structure, roof, and façade. *** BOA and LOA are property valuation measures of usable heated floor
area for habitation and non-habitation. BOA and LOA are registered for 90% of the multifamily buildings and 74% of the single-family
houses [23].

Necessary data processing was executed to assure uniform data input from heteroge-
neous data sources. As the data update varied among different authorities, the registered
data for variables of interest were compared with the inventory records to determine the
actual investigated part. These registered data were used as proxies for filling missing
data from the inventories. To assure data alignment for analysis, revised variables were
created by prioritizing the inventory data and complementing them with the registered
data. If none of the registers contained the information, the variables were labeled as NA.
Moreover, irrelevant observations, such as buildings constructed after the ban of asbestos
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and PCB in building materials in 1982, as well as the updated registers for reconstructed
buildings, were removed. The clean dataset summed up to 402 observations.

The detection results were collected from various environmental investigations and for
all types of building usages. Four inventory types were identified based on the document
title and the content format: report, protocol, control plan, and demolition plan. Reports
contain the most thorough investigation records with test sample results. In comparison,
protocols were developed by the municipality with a list of binary questions for the investi-
gated hazardous materials and their amount. Control plans were used for small houses and
simple buildings, and hazardous substances were generalized without specifying specific
materials. Demolition plans are required documents for demolition permit application, and
free text is used to describe the detection of hazardous substances or materials. Considering
the various extent of environmental investigations, primary hazardous substances such as
asbestos, PCB (polychlorinated biphenyls), CFC (chlorofluorocarbon), and mercury were
included in the training dataset. The detection results were documented at two levels in
a binary way: hazardous substances and hazardous building materials. Besides, specific
building parameters, including construction year, renovation year, detailed usage, area, and
the number of the floors, were also noted as data labels. The data quality was controlled
through a cross-validation workshop with the research group and a domain expert to
affirm the correct interpretation of the inventory documents.

Furthermore, building classes were created by reference to the description of the
renovation or demolition permit, primary usage of the building stated in the inventory,
as well as building types and building categories from the national building registers.
According to the actual investigation area and the past activities, the 402 observations were
categorized into ten building classes: single-family house, multifamily house, temporary
dwelling, school, office, commercial building, production building, industrial building,
warehouse, and other/infrastructure. Determining the building class can facilitate cluster-
ing the buildings with similar scale and construction tectonic. The categorization of the
inventory types and the building classes is fundamental to structure the data subgroups
for comparative analysis.

2.4. Data Analysis

Through conducting statistical operations on the 402 observations in the training
dataset, data representativeness and risk assessment of encountering hazardous building
materials were addressed. Python’s built-in library and interactive modules such as Pandas,
Matplotlib, and Seaborn were employed for the explorative data analysis. The training
dataset’s representativeness was evaluated by comparing the building parameters’ mean
values with the same parameters in the Gothenburg dataset 1929–1982. Furthermore,
the underlying correlations between the positive detection rates and different clustering
subgroups were ascertained, i.e., inventory type, building class, construction year, and area.
The descriptive statistical results provided an overall picture to assess the positive detection
rates of residual hazardous materials in the building stock. To finalize the statistical results
and set the scene for the future machine learning study, a cross-validation matrix evaluating
the data quality and quantity was created.

Based on the cross-validation matrix, the data subgroup for each building class and
investigated materials were assigned an assessment score. The assessment scores were
created following (1) below. First of all, the investigation results for each building class
were transformed into dummy variables, and four inventory types were given different
weights based on the level of detail. The weights from high to low in decile points were
assigned to the report, the protocol, the control plan, and the demolition plan, respectively.
For each hazardous material in a given building class, the number of observations for
various inventory types was multiplied by individual inventory weight, then the results
were summed and divided by the number of observations. After evaluating the observation
quality on an individual basis, a data number threshold was introduced to assess missing
values for each subgroup. For example, if the data size was more than 30 observations,
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denoted as 1, between 15 and 30 observations were marked as 0.5, otherwise they were 0.
Taking data size into account allowed assessing whether the observation number was large
enough for generating useful statistical results. Cross-validating the individual observation
quality and missing data in each subgroup, we can distinguish whether the detection results
were reliable through adopting a data boundary. In the end, the findings were summarized
and indicated the data subgroups that were found to be promising for machine learning
pre-processing.

y =
(Ir × r + Ip × np + Ic × nc + Id × nd)

n
∗ K (1)

y = Assessment score.
I = Inventory type for weighting the individual observation. I = 1 if is the report (r), I = 0.75
if is the protocol (p), I = 0.5 if is the control plan (c), and I = 0.25 if is the demolition plan (d).
n = Number of the observations in the studied subgroup.
K = Number of the observations enough for statistical operation. K = 1 if n >= 30, K = 0.5 if
15 =< n < 30, K = 0 if n < 15.

3. Results and Discussions

The results and discussions are structured in five parts: evaluating data quality and
size, data representativeness, statistical operations, cross-validation matrix, and method
replicability. Examining data quality and data size facilitated identifying subgroups appro-
priate for data analysis. By comparing the Gothenburg dataset and the training dataset, the
distribution of building parameters was displayed to show data representativeness. Subse-
quently, the positive detection rates were highlighted with missing values for hazardous
substances and materials through clustering with different parameters, such as inventory
type, building class, construction year, and area. To summarize the previous analysis results
and minimize the possible errors involving heterogeneous data, a cross-validation matrix
was created as an indicator based on data quality and quantity for investigated materials in
each building class. Finally, a short discussion regarding the method replicability to other
contexts and the relation to previous research were discussed at the end of the section.

3.1. Evaluating Data Quality and Size

In Figure 2, the inventory types were ranked in descending order according to in-
vestigations’ comprehensiveness and documentation details. The high-detailed levels of
environmental inventories specified the presence of hazardous substances and containing
materials in semi-uniform formats, such as report and protocol, constituted 48.5% and
21.6% of the investigations, respectively. They described whether missing data is the result
of investigations that have not been done or because investigation materials are not in place.
Field sampling of hazardous materials was usually executed by hazardous waste experts,
lowering the risk of mislabeling caused by visual distinguishment. Conversely, hazardous
materials’ information is occasionally missing in simple investigations such as control
plans or demolition plans. These information sources are only useful when estimating
contamination at the building level. Data granularity became visible by clustering inven-
tory types and building classes. High data granular building groups came from reports
mainly by hazardous waste experts and contractors for large-scale and complex buildings.
These included schools (13.9%), commercial buildings (8.7%), industrial buildings (6.5%),
multifamily houses (6.0%), and offices (5.5%). Owing to the risk of polluted operations,
industrial and production buildings, in most cases, require thorough environmental investi-
gations by legislation. On the contrary, pre-demolition audits for single-family houses and
temporary buildings mainly consisted of protocols, control plans, and demolition plans
performed by contractors or private persons.
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aggregating the number of inventories (N = 402).

An overview of the experience level of the investigators across the environmental
inventories helped evaluate the data source quality, as shown in Figure 3. Around 56.0%
of the observations in the training dataset were performed by hazardous waste experts
who are skilled in doing complicated environmental investigations. These environment
consultants were primarily involved in drafting environmental reports and field sampling
for the buildings obliged to pre-demolition audits. Another one-third of the observations
came from contractors, such as demolition companies or waste handling companies. They
are responsible for the demolition work and permit application, and thus skillful in making
protocols, demolition plans, and control plans. The rest, 13.9% of the inventories, were
done by private persons. They could be the building owners who only do the ocular
inspections for a part of buildings. Considering the proportion of the observations carried
out by hazardous waste experts or contractors, the reliability of the data is high.
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3.2. Data Representativeness

To test the feasibility of building machine learning prediction models from the training
dataset for future studies, data representativeness in terms of similarity of building parame-
ters needs to be controlled for. Representativeness of the training dataset was addressed by
comparing the distribution and the building parameters with the entire building stock in
the City of Gothenburg. Evaluating the variances between datasets enabled us to identify
interest groups based on indicative variables, including construction year, renovation year,
area range, and the number of floors. Gothenburg building stock data were retrieved
from the national building registers that contained 157,301 buildings. 100,635 buildings
were older than 1982, when the construction industry’s use of asbestos products was
banned. Building class of the observations in the comprehensive dataset was classified
according to municipality data using 1–99 indexing. Aggregation of building built before
1982 showed that most of Gothenburg’s old buildings were residential buildings. The rest
were unspecified buildings, school buildings, industrial buildings, production buildings,
and commercial buildings. The lack of registers for temporary buildings, offices, and
warehouses may be categorized as unspecific buildings.

According to Figure 4, the training dataset (N = 336) represents around 2.2% of the
Gothenburg building stock constructed from 1929 to 1982 (N = 14,996). The period was
chosen for consistency as the earliest building registers traced back to 1929. The density
plots were used to balance the unequal numbers of observations before comparing their
distribution. Density normalization scales the bars for the individual dataset, thus the areas
sum up to 1 [24]. Then, boxplots were created to illustrate the quartile of both datasets. They
are used to display data variation in statistical sampling [25]. Figure 4A showed that more
than half of the buildings were built between 1950 and 1970 in both datasets, corresponding
to the periods of the two massive construction activities in Sweden, the People’s Home [26]
and the Million Homes Programme [27] eras. A majority of the renovation activities (≥70%)
in both datasets took place during 1990–2005, based on Figure 4B. According to Figure 4C,
living area measurements of Gothenburg buildings were between 101 and 1000 m2, whereas
the area in the training dataset was either for buildings larger than 1500 m2 or smaller than
100 m2. An interpretation is that buildings with environmental investigations are larger
complicated buildings or smaller complementary buildings. Furthermore, the difference
between the training dataset and the Gothenburg dataset in the number of floors indicates
that low-level buildings were more commonly demolished or renovated for other use
purposes, as presented in Figure 4D.

Building parameters for each building class in the Gothenburg dataset and the training
dataset were compared to comprehend the building subgroups’ underlying characteristics,
as presented in Table 2. The distribution of the building class was calculated by dividing
the number of observations in each subgroup by the total number of observations in the
dataset. Buildings in the city center are often mixed residential and commercial buildings
with commercial zones on the lower floors. If these two building classes in the training
dataset are summed, the amount will be comparable to the Gothenburg dataset. Moreover,
school buildings were more frequently renovated with the removal of hazardous materials,
resulting in more environmental inventories than other building classes. One reason for
oversampling could be that multiple environmental investigations were executed for the
individual buildings in the school complexes, leading to an over representative data size.
The differences in the mean area and the mean floor of the school buildings could also
be understood from an aggregation level perspective, where Gothenburg registers took
properties into account rather than buildings. Lastly, industrial buildings and production
buildings accounted for a few numbers, and the buildings in the training dataset were
older than the corresponding Gothenburg subgroups. A reasonable doubt could be the
concern of contaminated activities. In most cases, the City Environment Administration
requested environmental audits for the industrial buildings before demolition, resulting in
more environmental inventories than other building classes.
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has the most buildings between 2 and 4 floors. 

Figure 4. Comparison between the Gothenburg subset and the training dataset within 1929–1982 by plotting normalized 
density distribution (on the left) and boxplot (on the right) across (A) construction year, (B) renovation year, (C) area, and 
(D) the level of floors. 

Building parameters for each building class in the Gothenburg dataset and the 
training dataset were compared to comprehend the building subgroups’ underlying 
characteristics, as presented in Table 2. The distribution of the building class was 
calculated by dividing the number of observations in each subgroup by the total number 
of observations in the dataset. Buildings in the city center are often mixed residential and 
commercial buildings with commercial zones on the lower floors. If these two building 
classes in the training dataset are summed, the amount will be comparable to the 
Gothenburg dataset. Moreover, school buildings were more frequently renovated with 
the removal of hazardous materials, resulting in more environmental inventories than 
other building classes. One reason for oversampling could be that multiple environmental 
investigations were executed for the individual buildings in the school complexes, leading 
to an over representative data size. The differences in the mean area and the mean floor 
of the school buildings could also be understood from an aggregation level perspective, 
where Gothenburg registers took properties into account rather than buildings. Lastly, 
industrial buildings and production buildings accounted for a few numbers, and the 
buildings in the training dataset were older than the corresponding Gothenburg 
subgroups. A reasonable doubt could be the concern of contaminated activities. In most 
cases, the City Environment Administration requested environmental audits for the 
industrial buildings before demolition, resulting in more environmental inventories than 
other building classes. 

Table 2. Overview of building parameters for each building class in the Gothenburg dataset and the training dataset in 
1929–1982 (numbers in bold show similar building characteristics between the two datasets). 

Building Class Dataset Distribution [%] Mean Year 
Built  

Mean Year 
Renovated  

Mean Area 
[m2] 

Mean Floor 
[N] 

Single-family house 
Gothenburg  64.6% 1962 1989 171 2 
Training  23.2% 1958 1980 129 1 

Multifamily house 
Gothenburg  24.6% 1953 1999 3110 4 
Training  12.2% 1961 1998 3324 4 

Temporary dwelling 
Gothenburg  NA NA NA NA NA 
Training  6.50% 1954 1971 45 1 

School Gothenburg  2.80% 1966 2002 2352 2 
 Training  17.9% 1968 2010 1497 2 
Office Gothenburg  NA NA NA NA NA 
 Training  7.70% 1963 1995 5146 4 

Figure 4. Comparison between the Gothenburg subset and the training dataset within 1929–1982 by plotting normalized
density distribution (on the left) and boxplot (on the right) across (A) construction year, (B) renovation year, (C) area, and
(D) the level of floors.

Table 2. Overview of building parameters for each building class in the Gothenburg dataset and the training dataset in
1929–1982 (numbers in bold show similar building characteristics between the two datasets).

Building Class Dataset Distribution
[%]

Mean Year
Built

Mean Year
Renovated

Mean Area
[m2]

Mean Floor
[N]

Single-family house Gothenburg 64.6% 1962 1989 171 2
Training 23.2% 1958 1980 129 1

Multifamily house Gothenburg 24.6% 1953 1999 3110 4
Training 12.2% 1961 1998 3324 4

Temporary dwelling Gothenburg NA NA NA NA NA
Training 6.50% 1954 1971 45 1

School Gothenburg 2.80% 1966 2002 2352 2
Training 17.9% 1968 2010 1497 2

Office Gothenburg NA NA NA NA NA
Training 7.70% 1963 1995 5146 4

Commercial building Gothenburg 0.40% 1963 2006 6625 3
Training 11.6% 1962 2001 5611 3

Production building Gothenburg 0.3% 1968 1998 6410 2
Training 5.1% 1956 2001 4728 3

Industrial building Gothenburg 0.5% 1964 1995 5005 2
Training 11.0% 1951 2008 4680 2

Warehouse Gothenburg NA NA NA NA NA
Training 2.7% 1968 NA 2688 1

Other/Infrastructure
Gothenburg 1.7% 1962 2001 4262 3
Training 2.1% 1964 NA 2822 2

Unlabeled * Gothenburg 5.0% NA NA NA NA

* The unlabeled building class implied that the buildings were assigned to “unspecific” building types in the national building registers.
Thus, it is not possible to determine its building class in the study.

3.3. Statistical Operations

In Table 3, the positive detection rates and the amount of missing data in each in-
ventory type were described. By reviewing the amount of missing data (Appendix B), a
better understanding of the usefulness of detection results could be developed. A posi-
tive detection rate showed the detection of hazardous materials, which was calculated by
dividing the number of positive results by the total number of observations, excluding
the missing data. The results showed that different inventory types had their strengths
in detecting hazardous substances and materials. Large numbers of missing data (≥90%)
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were presented in control plans and demolition plans as simple inventories lacked infor-
mation about hazardous materials. They often only show the positive detection of one
sought construction part; thus, these environmental inventories were mainly conducted to
remove the specific asbestos-containing material. The inclusion of simple inventories into
a more extensive dataset could lead to the risk of a skewed dataset. Detailed inventories,
on the other hand, contained comprehensive detection records of hazardous materials.
However, the detection records of certain building materials were not always available
as they were not included in the protocol, such as asbestos-containing switchboards and
joints, PCB-containing door closers, and cables.

Table 3. Positive detection rates and missing data of hazardous materials in each environmental inventory type (numbers in
bold contain more than 30 observations).

Substance and Material Inventory

Detailed Simple
Report Protocol Control Plan Demolition Plan
N = 195 N = 88 N = 42 N = 77

Rate NA Rate NA Rate NA Rate NA

Asbestos 0.84 6% 0.51 9% 0.47 14% 0.70 27%
Pipe insulation 0.56 34% 0.19 23% 0.78 79% 0.75 90%
Valves 0.44 79% 0.10 55% NA 100% 0.67 96%
Door/windows insulation 0.59 34% 0.03 31% NA 100% 0.50 97%
Cement panel board 0.61 67% 0.22 48% 0.67 93% 0.71 91%
Tile/clinker 0.39 27% 0.17 20% 1.00 93% 0.60 94%
Carpet glue 0.31 42% 0.11 30% NA 100% 0.40 94%
Floor mat 0.40 31% 0.43 92% 1.00 95% 0.75 95%
Ventilation channel 0.55 47% 0.83 93% 1.00 98% 1.00 94%
Switchboard 0.17 66% NA 100% NA 100% NA 100%
Joint 0.40 70% NA 100% NA 100% NA 100%
Others 0.75 69% 0.50 93% 0.25 90% 0.50 92%

PCB 0.63 8% 0.49 10% 0.19 26% 0.51 52%
Joint/sealant 0.66 38% 0.41 23% 0.18 74% 0.50 92%
Insulation windows 0.20 43% 0.16 23% 0.50 95% 0.67 96%
Capacitors in lamp/burner 0.66 41% 0.44 12% 0.11 79% 0.83 84%
Acrylic flooring 0.06 58% 0 23% 0.10 76% 0 97%
Door closer 0.72 91% NA 100% NA 100% NA 100%
Cable with PCB-oil 0.28 91% NA 100% NA 100% NA 100%
Others 0.52 87% 0 97% 0.33 86% 0.50 97%

CFC 0.79 34% 0.60 12% 0.62 19% 0.50 56%
Fridge/freezer 0.79 50% 0.39 15% 0.76 50% 0.81 79%
Building insulation 0.21 63% 0.33 20% 0.40 76% 0.33 96%
Cooling unit 0.53 54% 0.19 24% 0.40 88% 0.75 95%
Rolling gate 0.40 92% NA 98% NA 100% NA 100%
Others 0.36 94% 0.67 97% 0.40 88% 0.67 96%

Mercury 0.99 11% 0.72 3% 0.55 26% 0.76 35%
Lighting tube 0.99 16% 0.61 6% 0.74 55% 0.97 56%
Relay/switch 0.19 73% 0.26 22% 0.69 69% 0.71 91%
Level monitor/sensor 0.42 66% 0.04 23% NA 100% 0.67 96%
Thermometer 0.45 59% 0.09 22% 1.00 93% 0.80 94%
Thermostat 0.16 77% 0.13 22% NA 100% NA 99%
Water lock/drain line 0.08 73% 0.17 22% NA 100% 0.50 97%
Low energy lamp 0.97 67% 0.83 93% 1.00 98% 1.00 92%
Doorbell NA 96% 0.50 98% NA 100% 1.00 99%
Others 0.97 68% 1.00 88% 0.50 90% 0.89 88%

Note: Positive detection rate = Number of Positives/(Total number of observations—Number of NA).

Asbestos showed high positive detection rates in reports (0.84), demolition plans
(0.70), and protocols (0.51), especially in pipe insulation, door or window insulation,
cement panel boards, and ventilation channels. PCB generally had lower positive detection
rates compared with asbestos in building materials. The results from the reports and
the protocols indicated a higher risk of encountering PCB-containing joints/sealants and
capacitors in fluorescent lamps/burners than other potential PCB-containing materials.
Furthermore, CFC and mercury occurred frequently in buildings with positive detection
rates higher than 0.50 in all inventories. CFC-containing materials were primarily located
in freezers/fridges. However, the positive detection rates for building insulations and
cooling units were not in agreement between reports and protocols. Investigations of
CFC-containing materials in reports showed a high positive detection rate at refrigerations,
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whereas building insulation has a higher positive detection rate in protocols. The positive
detection rate of mercury was the highest across inventory types. Mercury-containing
materials were primarily found in lighting tubes. Positive detection rates of mercury-
containing level monitors or sensors and thermometers were also high in reports, while
investigations of protocols reported a high positive detection rate at relay or switches. The
significant differences in the positive detection rates and the reported frequency across
inventory types can be attributed to multiple reasons, including the building features
of each subgroup’s observations, purposes for environmental audits, and investigators’
experience levels. Hence, further data clustering was performed to analyze positive
detection rates and missing data in the subgroups of building classes (Table 4), construction
year range (Appendix C), and area range (Appendix D).

Table 4. The positive detection rates and missing data of hazardous materials in building classes (numbers in bold contain
more than 30 observations).

Substance and Material Building Class

Multifamily House School Office Commercial Building Industrial Building
N = 46 N = 66 N = 30 N = 48 N = 39

Rate NA Rate NA Rate NA Rate NA Rate NA

Asbestos 0.93 4% 0.89 5% 0.71 7% 0.74 2% 0.61 5%
Pipe insulation 0.81 30% 0.24 36% 0.55 33% 0.56 44% 0.62 46%
Valves 0.59 63% 0.25 82% 0.14 77% 0.22 81% 0.25 79%
Door/windows insulation 0.62 43% 0.41 44% 0.52 30% 0.56 44% 0.57 41%
Cement panel board 0.78 50% 0.35 74% 0.38 57% 0.47 65% 0.33 77%
Tile/clinker 0.63 35% 0.40 21% 0.39 23% 0.29 35% 0.23 44%
Carpet glue 0.54 48% 0.23 33% 0.46 57% 0.17 40% 0.22 54%
Floor mat 0.71 54% 0.35 27% 0.44 40% 0.26 44% 0.54 67%
Ventilation channel 0.88 65% 0.57 44% 0.43 53% 0.68 54% 0.31 67%
Switchboard 0.33 93% 0.06 52% 0.20 83% 0.10 79% 0.50 74%
Joint 0.87 67% 0.31 80% 0.20 67% 0.17 75% 0.50 90%
Others 0.77 72% 0.70 70% 0.62 73% 0.78 81% 0.80 74%

PCB 0.57 24% 0.61 8% 0.70 10% 0.57 17% 0.65 8%
Joint/sealant 0.57 35% 0.59 30% 0.78 40% 0.54 42% 0.65 49%
Insulation windows 0.41 63% 0.18 41% 0.20 33% 0.19 46% 0.22 54%
Capacitors in lamp/burner 0.58 59% 0.56 35% 0.55 27% 0.52 52% 0.86 28%
Acrylic flooring 0.06 65% 0.06 50% NA 60% NA 56% 0.06 59%
Door closer NA 100% 0.57 89% 0.50 93% 0.75 92% 1.00 97%
Cable with PCB-oil NA 98% NA 92% 0.20 83% 0.60 90% 1.00 97%
Others 1.00 91% 0.50 91% 0.33 80% 0.17 88% 0.67 92%

CFC 0.62 48% 0.70 35% 0.74 23% 0.83 38% 0.74 15%
Fridge/freezer 0.67 54% 0.68 42% 0.45 63% 0.74 52% 0.74 41%
Building insulation 0.36 70% 0.19 53% 0.23 57% 0.30 58% 0.20 62%
Cooling unit 0.38 65% 0.28 52% 0.74 37% 0.47 60% 0.45 49%
Rolling gate NA 100% 0.25 94% NA 97% NA 96% 0.60 87%
Others 1.00 98% NA 95% 1.00 97% NA 96% 0.50 95%

Mercury 0.86 20% 0.98 11% 0.90 0% 0.95 19% 0.95 0%
Lighting tube 0.79 37% 0.98 12% 0.87 0% 1.00 25% 0.97 5%
Relay/switch 0.27 67% 0.04 59% 0.46 57% 0.27 77% 0.42 69%
Level monitor/sensor 0.10 78% 0.37 47% 0.27 50% 0.31 73% 0.57 64%
Thermometer 0.56 61% 0.25 45% 0.44 47% 0.47 69% 0.38 67%
Thermostat 0.22 80% NA 59% 0.38 57% NA 83% 0.50 79%
Water lock/drain line 0.10 78% NA 62% 0.36 63% NA 71% 0.11 77%
Low energy lamp 1.00 91% 1.00 56% 0.89 70% 1.00 81% 1.00 82%
Doorbell NA 100% NA 95% 0.33 90% NA 98% NA 100%
Others 1.00 91% 1.00 67% 0.92 60% 1.00 81% 1.00 64%

Based on the conclusion of Figure 2, building classes with high data quality and
adequate data size were selected for further data analysis. These included multifamily
houses, schools, offices, commercial buildings, and industrial buildings. Table 4 describes
the data size and the positive detection rate of hazardous substances and materials for each
building class. A threshold value of 30 valid observations was set to enhance the certainty
of the results, underlined in Table 4. Asbestos was identified predominately in multifamily
houses with a positive detection rate of 0.93. In multifamily houses, asbestos-containing
ventilation channels, joints, and pipe insulation were encountered. For school buildings
and commercial buildings, ventilation channels contained a higher risk of asbestos. In con-
trast, asbestos-containing pipe insulations and door or window insulation were common
in offices and industrial buildings. PCB positive detection rates were generally lower than
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asbestos across building classes. Office buildings had the highest PCB positive detection
rate (0.70), mainly from PCB-containing joints/sealants. On the contrary, industrial build-
ings had an outstanding PCB detection value in capacitors in lamps/burners. For the rest
of the building classes, the positive detection rates of PCB-containing joints/sealants and
capacitors in lamps/burners showed similar patterns.

Concerning the exposure to environmental hazardous substances, mercury had a more
frequent presence than CFC. The high positive detection rate of mercury was primarily
due to the massive adoption of mercury-containing lighting tubes. Mercury-containing
thermometers were also commonly used in multifamily houses and office buildings. On the
other hand, CFC was found frequently in commercial buildings. CFC-containing fridges or
freezers were the primary reason for high positive detection rates in multifamily houses,
school buildings, commercial buildings, and industrial buildings. CFC-containing cooling
unit was the main attribute in office buildings. Overall, the patterns of detecting hazardous
materials in each building class appear to be reasonable considering the usage of the
building and their average construction year. Our results are to some extent in agreement
with the experience-based expert knowledge regarding frequent occurrences of hazardous
materials in certain building classes. However, it has been challenging to cross-compare the
positive detection rate of a specific building material among other building classes given
varied data sizes. To determine the generalization potential of the results in relation to the
regional building stock, incorporating more valid data of the studied buildings classes into
the subsequent analysis will be essential.

3.4. Cross-Validation Matrix

The cross-validation matrix was developed as a tool to evaluate the results’ reliability.
It helps set a boundary for hypothesis formulation by considering the data quality and
quantity on hand. Table 5 presents the overall assessment scores for each building class cal-
culated by the cross-validation matrix. The assessment score for the individual hazardous
substance and material differed significantly among building class subgroups, indicating
high variation of data quality and data size. The assessment score in 0 or NA implies that
the investigation records had low reference values owing to their data source primarily
from simple inventories or have an insufficient data size. Despite that the total data size
was high, high-quality detection records from reports or protocols were few. The lack of
detection records in hazardous material levels led to the high number of missing values,
thus the overall assessment score ranked low. The data sizes of temporary dwellings,
production buildings, warehouses, and others were inadequate or lacking investigation
records for certain building materials. Hence, their assessment scores were the lowest and
should be excluded in the subsequent machine learning modeling.

Table 5. The overview of the assessment scores for each building class based on data quality and data size (numbers in bold
are higher than 80 scores).

Substance and Material Class

C1 * C2 * C3 * C4 * C5 * C6 * C7 * C8 * C9 * C10 *

N = 102 N = 46 N = 24 N = 66 N = 30 N = 48 N = 23 N = 39 N = 10 N = 12

Asbestos 55 79 32 94 46 86 40 84 0 0
Pipe insulation 67 88 0 99 48 47 0 44 0 0
Valves 36 44 0 0 0 0 0 0 0 NA
Door/windows insulation 75 46 0 99 48 48 0 46 0 0
Cement panel board 34 45 0 50 0 42 0 0 0 0
Tile/clinker 73 91 0 98 48 97 0 44 0 0
Carpet glue 74 45 0 98 0 47 0 45 0 0
Floor mat 0 48 0 98 48 50 0 0 0 0
Ventilation channel 0 44 NA 100 0 47 0 0 0 0
Switchboard 0 0 NA 100 0 0 0 0 NA 0
Joint 0 50 NA 0 0 0 0 0 0 NA
Others 0 0 0 48 0 0 0 0 0 0
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Table 5. Cont.

Substance and Material Class

C1 * C2 * C3 * C4 * C5 * C6 * C7 * C8 * C9 * C10 *

N = 102 N = 46 N = 24 N = 66 N = 30 N = 48 N = 23 N = 39 N = 10 N = 12

PCB 58 84 32 92 47 92 42 90 0 0
Joint/sealant 71 90 0 96 47 48 0 42 0 0
Insulation windows 74 44 0 97 48 48 0 45 0 0
Capacitors in lamp/burner 70 42 35 96 46 46 0 44 0 0
Acrylic flooring 71 40 0 98 0 48 0 42 0 0
Door closer 0 NA 0 0 0 0 0 0 NA NA
Cable with PCB-oil 0 0 NA 0 0 0 NA 0 NA NA
Others 0 0 0 0 0 0 0 0 0 NA

CFC 58 39 34 94 48 88 0 85 0 0
Fridge/freezer 64 40 0 95 0 46 0 42 0 0
Building insulation 71 0 0 99 0 48 0 41 0 0
Cooling unit 71 38 0 99 48 48 0 45 0 0
Rolling gate 0 NA 0 0 0 0 0 0 0 NA
Others 0 0 0 0 0 0 0 0 0 0

Mercury 56 81 32 96 92 83 40 85 0 0
Lighting tube 62 39 34 97 92 85 42 86 0 0
Relay/switch 67 36 0 49 0 0 0 0 0 0
Level monitor/sensor 74 0 0 99 46 0 0 0 0 0
Thermometer 73 42 0 97 46 48 0 0 0 0
Thermostat 74 0 0 49 0 0 0 0 0 0
Water lock/drain line 73 0 0 49 0 0 0 0 0 0
Low energy lamp 0 0 NA 48 0 0 0 0 0 0
Doorbell 0 NA NA 0 0 0 NA NA 0 NA
Others 0 0 0 47 0 0 0 0 0 0

* Building class C1: single-family house; C2: multifamily house; C3: temporary dwelling; C4: school; C5: office; C6: commercial building;
C7: production building; C8: industrial building; C9: warehouse; C10: other/infrastructure.

Based on the cross-validation matrix, a ranking coupling building class and haz-
ardous materials in descending order, were presented in Table 6. The ranking of the
cross-validation results can not only guide further data collection procedures, but also
show the limitations of the current environmental audits. The school buildings reached
the highest score in most hazardous substances and materials investigations, implying
that their detection records were reliable. The fact may because their inventory data
come mainly from reports with extensive investigation records. For commercial build-
ings and industrial buildings, the assessment scores on the hazardous substance level,
asbestos-containing tile or clinker, and mercury-containing lighting tubes were high as
well. Yet, the rest of the hazardous materials in these two groups had low scores. While
PCB, PCB-containing joints, mercury, and asbestos-containing pipe insulation and tiles
or clinkers had high reference values in multifamily houses, only the detection records
of mercury and mercury-containing lighting tubes were high in office buildings. The fact
that PCB was better surveyed in multifamily houses than other building classes could be
explained by their conventional construction method of concrete elements and bricks with
many sealants. Therefore, their detection results of the potential PCB-containing joints
or sealants and asbestos-containing tiles or clinkers showed fewer missing values in the
investigation records.
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Table 6. Ranking the hazardous substance and material detection records in building class based on
the cross-validation results; only the assessment scores higher than 80 were listed.

Rank Class Substance Hazardous Material Score NA N

1 4—School Asbestos Ventilation channel 100 44% 66
1 4—School Asbestos Switchboard 100 52% 66
2 4—School Asbestos Pipe insulation 99 36% 66

2 4—School Asbestos Door/windows
insulation 99 44% 66

2 4—School CFC CFC—Building
insulation 99 53% 66

2 4—School CFC CFC—Cooling unit 99 52% 66
2 4—School Mercury Level monitor/sensor 99 47% 66
3 4—School Asbestos Tile/clinker 98 21% 66
3 4—School Asbestos Carpet glue 98 33% 66
3 4—School Asbestos Floor mat 98 27% 66
3 4—School PCB Acrylic flooring 98 50% 66
4 4—School PCB Insulation windows 97 41% 66
4 4—School Mercury Lighting tube 97 12% 66
4 4—School Mercury Thermometer 97 45% 66
4 6— Commercial building Asbestos Tile/clinker 97 35% 48
5 4—School PCB Joint/sealant 96 30% 66
5 4—School PCB Capacitors in lamp 96 35% 66
5 4—School Mercury 96 11% 66
6 4—School CFC Fridge/freezer 95 42% 66
7 4—School Asbestos 94 5% 66
7 4—School CFC 94 35% 66
8 4—School PCB 92 8% 66
8 6—Commercial building PCB 92 17% 48
8 5—Office Mercury 92 0% 30
8 5—Office Mercury Lighting tube 92 0% 30
9 2—Multifamily house Asbestos Tile/clinker 91 35% 46
10 8—Industrial building PCB 90 8% 39
10 2—Multifamily house PCB Joint/sealant 90 35% 46
11 6—Commercial building CFC 88 38% 48
11 2—Multifamily house Asbestos Pipe insulation 88 30% 46
12 6—Commercial building Asbestos 86 2% 48
12 8—Industrial building Mercury Lighting tube 86 5% 39
13 8—Industrial building CFC 85 15% 39
13 8—Industrial building Mercury 85 0% 39
13 6—Commercial building Mercury Lighting tube 85 25% 48
14 8—Industrial building Asbestos 84 5% 39
14 2—Multifamily house PCB 84 24% 46
15 6—Commercial building Mercury 83 19% 48
16 2—Multifamily house Mercury 81 20% 46

3.5. Method Replicability

Nowadays, obligatory environmental audits and open databases for building registers,
the method’s key data input, are already available in many EU countries. For example, the
Waste Register database in Estonia, the Integrated Waste Management System, and the
Asbestos Database in Poland [10]. Thus, these countries have developed an established
waste management practice and are in the position to adopt the proposed approach to
estimate the residual hazardous material stock. As for the countries with the limited imple-
mentation of environmental audits concerning building size and function, as described in
the introduction, it will be beneficial to create a harmonized environmental protocol for
auditing hazardous materials in an online database [11]. Having a uniform digital dataset
template can reduce the risk of information asymmetry and save processing time for data
compiling, making data queries for environmental information much more effective.

Building registered data have become an essential source to describe building stock.
However, data uncertainties are required to be addressed to assure accurate analytic
results [23]. Previous efforts validated the EPC databases using stepwise regression mod-
els [23] and deploying a data quality assurance method [28]. Compared with the broad
applications of EPC data [28], the environmental audits data remain relatively unexplored.
Moreover, a large number of uninvestigated building components and undetermined
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assessment results, as well as the varied extent of environmental investigation execution
between building classes, fail to be exposed. The study systematically examines the quality
and content of environmental inventories, and based on that, evaluates their usability to
enrich the building databases by adding specific environmental information. Referencing
the EU data validation levels [29], a standard procedure to transform the field data into an
organized, reliable dataset was exhibited. By showing the limitations and the possibilities
of the environmental audits data, we hope to encourage more research in the application
domain of safe construction and waste management.

The metabolism of the residual hazardous materials in the building stock is slow and
the risk of exposure exists in every stage of the building life cycle. Previous literature
showed that exceeding PCB concentration in the indoor air from volatilization during
the building operation phase [30] and the airborne asbestos emission from the emergency
demolitions [3] place an indispensable requirement for a long-term preventive maintenance
strategy. To facilitate the abatement policy of in situ hazardous materials, extensive studies
were conducted at the urban inventory level and the specific building class level. A stocks
and flows model for asbestos was developed to determine common types of asbestos-
containing materials [31]. Surprisingly, it was found that cement sheeting and waterpipe
accounted for 90% of the asbestos consumption in Australia. Another study in the Aus-
tralian residential buildings also showed high positive detection rates of asbestos backing
board to the electrical meter boxes and asbestos eves [2]. Overall, asbestos-containing ma-
terials presented in 82.3% of the sampled houses. Similarly, asbestos-containing materials
were found in around 95% of the abandoned residential homes in Detroit, especially in
flooring, roofing, siding, and duct insulation [6]. These findings aligned with our results as
the positive detection rate of asbestos in multifamily houses was 93%, and the high-risk
materials were pipe insulation and cement panel board.

The investigations of building-related PCBs also showed a similar trend. An extensive
survey in Switzerland verified that 48% of the buildings built between 1950 and 1980
contained PCBs [32]. In the same period, 46% of the school buildings in the USA were
constructed [4]. Implementing the engineering controls to mitigate PCB diffusion from
joint sealants and building caulk in American school buildings indicated a strong need for
immediate actions [33,34]. In a citywide building sampling study, the positive detection rate
of PCB-containing sealants was found at 14% in Toronto [30]. In particular, a high density
of PCBs existed in commercial and electricity-intensive buildings [35]. Compared with
brick or glass buildings, concrete buildings had a higher tendency to be contaminated by
PCBs [30]. The results from our study agree with their findings. High detection rates of PCB-
containing joints or sealants were noticed in concrete-built office and industrial buildings.
Overall, the frequent presence of asbestos and PCB-containing materials worldwide reveals
a necessity to develop an effective identification approach for general buildings. The
method proposed in the study presents a data-driven solution to evaluate the risk of
encountering hazardous materials in a high detail.

This study confirmed the potential to assess hazardous materials in regional building
stock by using multiple registered records. Combining the environmental information
from numerous registered data sources made it possible to systematically estimate the risk
of hazardous substance occurrence in the building stock [20]. High data completeness
of the detailed inventories, such as protocols and reports, enables a thorough analysis
of hazardous material types in various building classes. Although the final output is
highly dependent on data availability and quality, it is a rather cost-effective approach
to trace the existing hazardous materials. In addition, the method’s generability can be
replicated in other countries and help prioritize decontamination plans before demolition
or extensive retrofit.

4. Conclusions

This paper studied the feasibility of tracing hazardous materials in the existing build-
ing stock based on multi-sourcing registered records. The opportunities and challenges
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of using environmental audits to guide the risk assessment of hazardous materials were
explored. By associating national building registers and environmental inventories, a
training dataset was created to verify the experienced-based expert knowledge. Around
65% of the training dataset’s observations comprised reports and protocols with high
data granularity. Asbestos was the most frequently investigated substance, following by
mercury, PCB, and CFC. The extent of environmental investigations of each building class
varies, depending on building complexity and ownership. Most of the observations in
reports were schools, commercial buildings, industrial buildings, multifamily houses, and
office buildings, whereas in protocols, control plans, and demolition plans, single-family
houses were most common. By validating data size and quality, building groups appropri-
ate for the statistical operations were determined. Furthermore, comparing the distribution
of building parameters between the training dataset and the Gothenburg dataset helps
to understand the data representativeness, which involves the viability of constructing
prediction models from the training dataset. The risk of encountering hazardous materials
was assessed by evaluating the positive detection rates and the amount of missing data.
Through clustering data subgroups such as inventory types, building classes, construc-
tion year, and area range, different perspectives for evaluating positive detection rates
and missing data were presented. The results indicated high positive detection rates of
asbestos-containing materials in multifamily buildings and prevalent PCB-containing ma-
terials in industrial buildings. High number of missing values for hazardous materials in
single-family houses, production buildings, and warehouses were highlighted to improve
the current environmental investigation practices.

The explorative approach of delineating quality environmental data demonstrates a
general workflow for studying in situ hazardous building materials’ management. The
novel method is cost-effective in identifying general occurrence patterns of hazardous
building materials and can be used to complement traditional environmental investigations.
The findings from the cross-validation matrix showed that the potential data subgroups
for machine learning modelling were school buildings, commercial buildings, multifamily
houses, and industrial buildings at hazardous substance and material levels. Future
research is planned to include more observations from the abovementioned building
classes to increase the prediction accuracy and conduct cross-verification when constructing
machine learning models. The developed data-driven method and the structure of the
training dataset proposed in the study are replicable in the countries accessible to the
environmental-audit records and general building information.
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Appendix A

The metadata of the Gothenburg dataset from Swedish EPC, Swedish Real Estate
Taxation register, and Municipal cadastral register.

Table A1. Swedish Energy Performance Certificate (EPC) data overview.

Value Category Data Specification Measurement Type

1. Matching, keys, and sorting National real estate number and index, Address,
EPC index

2. Building characteristics

Building age
Complexity

Shared walls with other buildings
Recognition of heritage value

Scale variable [Year]
Binary [Complex, non-complex]

Ordinal [Detached, semi-attached, attached]
Nominal

3. Building usage National registration of building usage type code.
Detailed usage of building

Nominal
Share of building used for the 12 most

common types

4. Building area

Heated floor area
Floors

Stair cases
Number of apartments
Floors below ground
Heated garage space

Scale [m2]
Ordinal
Ordinal
Ordinal
Ordinal

Scale [m2]

5. Heating

Energy usage for heating divided in 13 energy
sources

Tic box for measurement type
Period of measurement

Scales [kWh/year]
Nominal [Measured, Distributed]

Interval [Year and Month]

6. Household electricity and water

Cooling energy usage
Tap water heat usage

Electricity usage divided in: domestic, shared, and
non-domestic usage

All measurements in the category include
Scale [kWh/year] and Nominal [Measured,

Distributed]

7. Ventilation Ventilation type
Ventilation control conducted

Nominal [Exhaust, balanced, balanced with
heat exchanger, Exhaust with heat pump,

natural ventilation]
Nominal [Yes, No, Partially]

8. Recommended energy usage reducing
measures

Tic box for 28 common energy usage reducing
measures

Estimated decreased energy usage
Estimated cost per saved kWh

Nominal
Scale [kWh/year]
Scale [SEK/kWh]

Table A2. Swedish Real Estate Taxation register overview.

Value Category Data Specification Measurement Type

1. Matching, keys, and sorting Coordinates, National real estate number
and index, Address

2. Building ages

Building age
Value year (Swedish tax agency’s proxy

for renovation state)
Latest renovation year

Scale variable [Year]
Scale variable [Year]
Scale variable [Year]

3. Building taxation value Building taxation value
Rent level

Scale variable [SEK]
Scale variable [SEK]

4. Building area Building size (BOA) Scales [m2]
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Table A3. Municipal cadastral register overview.

Value Category Data Specification Measurement Type

1. Matching, keys, and sorting Coordinates, National real estate number
and index, Address

2. Building ages Building age Scale variable [Year]

3. Building usage Simple classification
Detailed classification

Nominal [1–7]
Nominal [1–99]

4. Building area Building size (BOA) Scales [m2]

5. Building status Changes
Demolished or burned down

Nominal [Building permit applied for,
Under construction, Existing building,

Changed information]
Binary

6. Legal status Land ownership
Legal land restrictions

Binary
Binary

Appendix B

Table A4. Percentage of missing data of the hazardous materials in each building class.

Substance and Material Class

C1 * C2 * C3 * C4 * C5 * C6 * C7 * C8 * C9 * C10 *
N = 102 N = 46 N = 24 N = 66 N = 30 N = 48 N = 23 N = 39 N = 10 N = 12

Asbestos 19% 4% 17% 5% 7% 2% 22% 5% 30% 33%
Pipe insulation 58% 30% 62% 36% 33% 44% 52% 46% 80% 58%

Valves 80% 63% 79% 82% 77% 81% 87% 79% 80% 100%
Door/windows insulation 70% 43% 62% 44% 30% 44% 57% 41% 70% 75%

Cement panel 75% 50% 67% 74% 57% 65% 87% 77% 70% 92%
Tile/clinker 61% 35% 67% 21% 23% 35% 70% 44% 80% 67%
Carpet glue 68% 48% 67% 33% 57% 40% 83% 54% 80% 67%
Floor mat 91% 54% 96% 27% 40% 44% 70% 67% 90% 75%

Ventilation channel 93% 65% 100% 44% 53% 54% 83% 67% 90% 83%
Switchboard 97% 93% 100% 52% 83% 79% 91% 74% 100% 92%

Joint 99% 67% 100% 80% 67% 75% 91% 90% 90% 100%
Others 91% 72% 96% 70% 73% 81% 83% 74% 90% 92%

PCB 34% 24% 21% 8% 10% 17% 4% 8% 10% 25%
Joint/sealant 64% 35% 50% 30% 40% 42% 70% 49% 70% 67%

Insulation windows 67% 63% 58% 41% 33% 46% 48% 54% 80% 67%
Capacitors in lamp/burner 59% 59% 38% 35% 27% 52% 43% 28% 70% 67%

Acrylic flooring 64% 65% 54% 50% 60% 56% 74% 59% 80% 50%
Door closer 99% 100% 96% 89% 93% 92% 91% 97% 100% 100%

Cable with PCB-oil 99% 98% 100% 92% 83% 90% 100% 97% 100% 100%
Others 93% 91% 96% 91% 80% 88% 91% 92% 90% 100%

CFC 25% 48% 21% 35% 23% 38% 48% 15% 40% 50%
Fridge/freezer 44% 54% 42% 42% 63% 52% 52% 41% 70% 50%

Building insulation 62% 70% 46% 53% 57% 58% 87% 62% 80% 67%
Cooling unit 66% 65% 54% 52% 37% 60% 74% 49% 80% 67%
Rolling gate 98% 100% 96% 94% 97% 96% 96% 87% 90% 100%

Others 93% 98% 96% 95% 97% 96% 91% 95% 90% 92%

Mercury 26% 20% 12% 11% 0% 19% 13% 0% 10% 25%
Lighting tube 45% 37% 29% 12% 0% 25% 17% 5% 20% 25%
Relay/switch 61% 67% 50% 59% 57% 77% 78% 69% 80% 67%

Level monitor/sensor 71% 78% 54% 47% 50% 73% 83% 64% 80% 83%
Thermometer 68% 61% 50% 45% 47% 69% 70% 67% 70% 75%
Thermostat 70% 80% 54% 59% 57% 83% 87% 79% 80% 83%

Water lock/drain line 69% 78% 50% 62% 63% 71% 78% 77% 80% 83%
Low energy lamp 94% 91% 100% 56% 70% 81% 70% 82% 50% 83%

Doorbell 97% 100% 100% 95% 90% 98% 100% 100% 90% 100%
Others 92% 91% 75% 67% 60% 81% 74% 64% 70% 83%

* Building class C1: Single-family house; C2: Multifamily house; C3: Temporary dwelling; C4: School; C5: Office; C6: Commercial building;
C7: Production building; C8: Industrial building; C9: Warehouse; C10: Other/Infrastructure.



Sustainability 2021, 13, 7836 21 of 23

Appendix C

Table A5. The positive detection rates and missing data of hazardous materials in construction year clusters (numbers in
bold contain than 30 observations).

Substance and Material Construction Year Group

1930–1939 1940–1949 1950–1959 1960–1969 1970–1979
N = 41 N = 37 N = 43 N = 112 N = 69

Rate NA Rate NA Rate NA Rate NA Rate NA

Asbestos 0.76 10% 0.66 14% 0.86 16% 0.75 6% 0.69 12%
Pipe insulation 0.54 41% 0.47 49% 0.79 44% 0.42 34% 0.27 52%

Valves 0.25 71% 0.31 65% 0.50 86% 0.43 75% 0 86%
Door/windows insulation 0.54 32% 0.31 57% 0.75 63% 0.45 43% 0.33 48%

Cement panel board 0.36 66% 0.50 68% 0.55 74% 0.49 67% 0.59 58%
Tile/clinker 0.32 54% 0.21 49% 0.18 49% 0.47 30% 0.26 45%
Carpet glue 0.19 61% 0.12 57% 0.39 58% 0.37 44% 0.03 55%
Floor mat 0.57 83% 0.21 62% 0.32 56% 0.62 54% 0.19 54%

Ventilation channel 0.70 76% 0.44 76% 0.81 63% 0.63 62% 0.37 61%
Switchboard 0.50 85% 0.33 84% 0 86% 0.21 79% 0 77%

Joint 0 90% 0.17 84% 0.25 81% 0.74 79% 0.22 87%
Others 1.00 78% 0.57 81% 1.00 84% 0.75 75% 0.40 78%

PCB 0.61 20% 0.48 27% 0.58 28% 0.44 13% 0.63 14%
Joint/sealant 0.11 56% 0 57% 0.11 58% 0.29 31% 0.28 43%

Insulation windows 0.11 54% 0.14 62% 0.24 60% 0.18 49% 0.22 48%
Capacitors in lamp/burner 0.59 34% 0.50 51% 0.56 58% 0.39 47% 0.68 36%

Acrylic flooring 0.06 59% 0 59% 0.12 60% 0.02 56% 0.04 59%
Door closer 0 98% 1.00 89% 1.00 88% 1.00 98% 0.67 96%

Cable with PCB-oil 0.50 90% 0 97% 1.00 98% 0.20 96% 0.33 96%
Others 0.50 90% 0.25 89% 0.33 93% 0.69 86% 0 96%

CFC 0.78 22% 0.67 27% 0.72 42% 0.68 28% 0.60 35%
Fridge/freezer 0.27 34% 0.21 46% 0.33 56% 0.29 46% 0.35 57%

Building insulation 0.81 63% 0.60 62% 0.63 65% 0.64 56% 0.60 62%
Cooling unit 0.57 49% 0.50 57% 0.50 63% 0.29 54% 0.48 61%
Rolling gate 0 98% 0.50 89% 1.00 93% 0 99% 0.25 94%

Others 0.75 90% 0.33 92% 0.67 93% 0.33 97% 0.50 97%

Mercury 0.91 15% 0.73 19% 0.83 33% 0.78 9% 0.95 10%
Lighting tube 0.88 22% 0.84 32% 0.88 42% 0.79 21% 0.97 13%
Relay/switch 0.46 68% 0.36 70% 0.19 63% 0.22 60% 0.21 72%

Level monitor/sensor 0.27 63% 0.11 76% 0.10 77% 0.28 58% 0.38 70%
Thermometer 0.40 63% 0.20 73% 0.27 74% 0.41 52% 0.30 57%
Thermostat 0.10 76% 0.12 78% 0.11 79% 0.14 67% 0.06 74%

Water lock/drain line 0.33 63% 0.10 73% 0.10 77% 0.10 65% 0.05 72%
Low energy lamp 1.00 80% 0.83 84% 1.00 86% 1.00 84% 1.00 67%

Doorbell 0 98% 0 97% 0 98% 1.00 98% 0 99%
Others 1.00 85% 0.78 76% 1.00 81% 0.97 73% 0.87 78%

Appendix D
Table A6. The positive detection rates and missing data of hazardous materials in area clusters (numbers in bold contain
more than 30 observations).

Substance and Material Area Range (m2)

–100 101–1000 1001–2000 2001–3000 3000–
N = 74 N = 143 N = 52 N = 24 N = 67

Rate NA Rate NA Rate NA Rate NA Rate NA

Asbestos 0.38 18% 0.73 12% 0.82 4% 0.87 4% 0.85 7%
Pipe insulation 0.04 62% 0.37 43% 0.68 40% 0.64 42% 0.76 37%

Valves 0.17 76% 0.20 86% 0.64 73% 0.29 71% 0.32 72%
Door/windows insulation 0 65% 0.35 50% 0.55 44% 0.42 50% 0.79 42%

Cement panel board 0.26 69% 0.43 76% 0.70 62% 0.78 63% 0.52 60%
Tile/clinker 0.07 62% 0.34 43% 0.39 40% 0.43 42% 0.44 28%
Carpet glue 0.04 64% 0.17 55% 0.50 42% 0.20 58% 0.38 45%
Floor mat 0.60 93% 0.30 63% 0.56 38% 0.50 58% 0.44 46%

Ventilation channel 0.50 97% 0.51 70% 0.67 48% 0.60 58% 0.59 52%
Switchboard 1.00 97% 0.15 77% 0 85% 0.20 79% 0.21 79%

Joint NA 100% 0.31 91% 0.53 71% 0.67 88% 0.38 64%
Others 0.20 93% 0.76 80% 0.75 69% 0.75 83% 0.79 79%
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Table A6. Cont.

Substance and Material Area Range (m2)

–100 101–1000 1001–2000 2001–3000 3000–
N = 74 N = 143 N = 52 N = 24 N = 67

Rate NA Rate NA Rate NA Rate NA Rate NA

PCB 0.34 32% 0.47 16% 0.43 19% 0.78 25% 0.78 10%
Joint/sealant 0 58% 0.17 50% 0.14 44% 0.09 54% 0.37 27%

Insulation windows 0.04 62% 0.15 50% 0.06 67% 0.36 54% 0.26 43%
Capacitors in lamp/burner 0.39 55% 0.51 42% 0.43 60% 0.64 42% 0.78 45%

Acrylic flooring 0 58% 0.03 56% 0.07 71% 0 63% 0.07 55%
Door closer NA 100% 1.00 98% 1.00 90% NA 100% 0.67 91%

Cable with PCB-oil NA 100% 0.25 97% 0 94% 1.00 96% 0.43 90%
Others 0.50 97% 0.45 92% 1.00 98% 0.50 92% 0.36 79%

CFC 0.53 26% 0.71 26% 0.71 40% 0.64 54% 0.80 34%
Fridge/freezer 0.49 42% 0.70 41% 0.65 50% 0.56 63% 0.77 61%

Building insulation 0.30 55% 0.28 57% 0.18 67% 0.25 67% 0.27 67%
Cooling unit 0.20 59% 0.35 55% 0.59 67% 0.22 63% 0.66 52%
Rolling gate NA 100% 0.20 97% 0.50 92% NA 100% 0.75 94%

Others 0 99% 0.62 94% 0 96% 1.00 96% 0.33 96%

Mercury 0.55 26% 0.88 12% 0.93 17% 0.90 17% 0.91 13%
Lighting tube 0.62 43% 0.89 20% 0.91 35% 0.85 17% 0.94 19%
Relay/switch 0.25 57% 0.33 62% 0.25 62% 0.14 71% 0.50 79%

Level monitor/sensor 0 62% 0.33 64% 0.14 73% 0.29 71% 0.48 63%
Thermometer 0.03 61% 0.29 61% 0.48 56% 0.40 58% 0.58 61%
Thermostat 0 62% 0.16 69% 0 77% 0 79% 0.50 79%

Water lock/drain line 0.14 61% 0.16 66% 0 79% 0 79% 0.28 73%
Low energy lamp 1.00 99% 0.97 75% 0.80 81% 1.00 83% 1.00 73%

Doorbell NA 100% 0.67 98% 0 96% NA 100% 0 96%
Others 0.67 96% 0.94 75% 0.90 81% 1.00 79% 0.94 75%
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